Machine Learning for the Quantified Self: On the Art of Learning from Sensory Data: Cognitive Systems Monographs, cartea 35
Autor Mark Hoogendoorn, Burkhardt Funken Limba Engleză Hardback – 5 oct 2017
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 928.07 lei 39-44 zile | |
Springer International Publishing – 15 aug 2018 | 928.07 lei 39-44 zile | |
Hardback (1) | 1161.71 lei 6-8 săpt. | |
Springer International Publishing – 5 oct 2017 | 1161.71 lei 6-8 săpt. |
Din seria Cognitive Systems Monographs
- 15% Preț: 647.59 lei
- 20% Preț: 645.31 lei
- 18% Preț: 957.62 lei
- 15% Preț: 632.55 lei
- 15% Preț: 643.99 lei
- 20% Preț: 1447.17 lei
- 15% Preț: 629.73 lei
- 15% Preț: 633.02 lei
- 15% Preț: 639.90 lei
- 20% Preț: 643.50 lei
- 15% Preț: 640.55 lei
- 15% Preț: 641.71 lei
- 5% Preț: 1103.75 lei
- 15% Preț: 637.59 lei
- 15% Preț: 648.24 lei
- 20% Preț: 650.40 lei
- Preț: 391.02 lei
- 15% Preț: 643.48 lei
- 20% Preț: 663.61 lei
- 20% Preț: 652.54 lei
- 20% Preț: 699.43 lei
- 15% Preț: 640.88 lei
- 20% Preț: 657.67 lei
- 20% Preț: 1000.04 lei
- 20% Preț: 648.44 lei
- 18% Preț: 886.92 lei
- 20% Preț: 647.61 lei
- 20% Preț: 651.09 lei
- 15% Preț: 642.68 lei
- 20% Preț: 649.93 lei
- 18% Preț: 944.19 lei
Preț: 1161.71 lei
Preț vechi: 1452.14 lei
-20% Nou
Puncte Express: 1743
Preț estimativ în valută:
222.35€ • 231.25$ • 186.33£
222.35€ • 231.25$ • 186.33£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319663074
ISBN-10: 3319663070
Pagini: 231
Ilustrații: XV, 231 p. 89 illus., 72 illus. in color.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.53 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria Cognitive Systems Monographs
Locul publicării:Cham, Switzerland
ISBN-10: 3319663070
Pagini: 231
Ilustrații: XV, 231 p. 89 illus., 72 illus. in color.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.53 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria Cognitive Systems Monographs
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Basics of Sensory Data.- Feature Engineering based on Sensory Data.- Predictive Modeling without Notion of Time.- Predictive Modeling with Notion of Time.- Reinforcement Learning to Provide Feedback and Support.- Discussion.
Textul de pe ultima copertă
This book explains the complete loop to effectively use self-tracking data for machine learning. While it focuses on self-tracking data, the techniques explained are also applicable to sensory data in general, making it useful for a wider audience. Discussing concepts drawn from state-of-the-art scientific literature, it illustrates the approaches using a case study of a rich self-tracking data set. Self-tracking has become part of the modern lifestyle, and the amount of data generated by these devices is so overwhelming that it is difficult to obtain useful insights from it. Luckily, in the domain of artificial intelligence there are techniques that can help out: machine-learning approaches allow this type of data to be analyzed. While there are sample books that explain machine-learning techniques, self-tracking data comes with its own difficulties that require dedicated techniques such as learning over time and across users.
Caracteristici
Presents a unique overview of dedicated machine learning techniques for sensor data Features hands-on exercises, including those related to mobile app development Illustrates the techniques by means of examples to make them more easily understandable Includes supplementary material: sn.pub/extras