Cantitate/Preț
Produs

Machine Learning in Medicine - Cookbook Two: SpringerBriefs in Statistics

Autor Ton J. Cleophas, Aeilko H. Zwinderman
en Limba Engleză Paperback – 20 iun 2014
The amount of data medical databases doubles every 20 months, and physicians are at a loss to analyze them. Also, traditional data analysis has difficulty to identify outliers and patterns in big data and data with multiple exposure / outcome variables and analysis-rules for surveys and questionnaires, currently common methods of data collection, are, essentially, missing. Consequently, proper data-based health decisions will soon be impossible.
Obviously, it is time that medical and health professionals mastered their reluctance to use machine learning methods and this was the main incentive for the authors to complete a series of three textbooks entitled “Machine Learning in Medicine Part One, Two and Three, Springer Heidelberg Germany, 2012-2013", describing in a nonmathematical way over sixty machine learning methodologies, as available in SPSS statistical software and other major software programs. Although well received, it came to our attention that physicians and students often lacked time to read the entire books, and requested a small book, without background information and theoretical discussions and highlighting technical details.
For this reason we produced a 100 page cookbook, entitled "Machine Learning in Medicine - Cookbook One", with data examples available at extras.springer.com for self-assessment and with reference to the above textbooks for background information. Already at the completion of this cookbook we came to realize, that many essential methods were not covered. The current volume, entitled "Machine Learning in Medicine - Cookbook Two" is complementary to the first and also intended for providing a more balanced view of the field and thus, as a must-read not only for physicians and students, but also for any one involved in the process and progress of health and health care.
Similarly to Machine Learning in Medicine - Cookbook One, the current work will describe stepwise analyses of over twenty machinelearning methods, that are, likewise, based on the three major machine learning methodologies:
  • Cluster methodologies (Chaps. 1-3)
  • Linear methodologies (Chaps. 4-11)
  • Rules methodologies (Chaps. 12-20)
In extras.springer.com the data files of the examples are given, as well as XML (Extended Mark up Language), SPS (Syntax) and ZIP (compressed) files for outcome predictions in future patients. In addition to condensed versions of the methods, fully described in the above three textbooks, an introduction is given to SPSS Modeler (SPSS' data mining workbench) in the Chaps. 15, 18, 19, while improved statistical methods like various automated analyses and Monte Carlo simulation models are in the Chaps. 1, 5, 7 and 8.
We should emphasize that all of the methods described have been successfully applied in practice by the authors, both of them professors in applied statistics and machine learning at the European Community College of Pharmaceutical Medicine in Lyon France. We recommend the current work not only as a training companion to investigators and students, because of plenty of step by step analyses given, but also as a brief introductory text to jaded clinicians new to the methods. For the latter purpose, background and theoretical information have been replaced with the appropriate references to the above textbooks, while single sections addressing "general purposes", "main scientific questions" and "conclusions" are given in place.
Finally, we will demonstrate that modern machine learning performs sometimes better than traditional statistics does. Machine learning may have little options for adjusting confounding and interaction, but you can add propensity scores and interaction variables to almost any machine learning method.
Citește tot Restrânge

Din seria SpringerBriefs in Statistics

Preț: 36106 lei

Preț vechi: 38007 lei
-5% Nou

Puncte Express: 542

Preț estimativ în valută:
6911 7187$ 5791£

Carte tipărită la comandă

Livrare economică 13-27 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319074122
ISBN-10: 3319074121
Pagini: 152
Ilustrații: XI, 140 p. 49 illus.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.23 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Seria SpringerBriefs in Statistics

Locul publicării:Cham, Switzerland

Public țintă

Professional/practitioner

Cuprins

Preface. I Cluster models.- Nearest Neighbors for Classifying New Medicines.- Predicting High-Risk-Bin Memberships.- Predicting Outlier Memberships.- Linear Models.- Polynomial Regression for Outcome Categories.- Automatic Nonparametric Tests for Predictor Categories- Random Intercept Models for Both Outcome and Predictor.- Automatic Regression for Maximizing Linear Relationships.- Simulation Models for Varying Predictors.- Generalized Linear Mixed Models for Outcome Prediction from Mixed Data.- Two Stage Least Squares for Linear Models with Problematic.- Autoregressive Models for Longitudinal Data. II Rules Models.- Item Response Modeling for Analyzing Quality of Life with Better Precision.- Survival Studies with Varying Risks of Dying.- Fuzzy Logic for Improved Precision of Pharmacological Data Analysis.- Automatic Data Mining for the Best Treatment of a Disease.- Pareto Charts for Identifying the Main Factors of Multifactorial.- Radial Basis Neural Networks for Multidimensional Gaussian.- Automatic Modeling for Drug Efficacy Prediction.- Automatic Modeling for Clinical Event Prediction.- Automatic Newton Modeling in Clinical Pharmacology.- Index.

Recenzii

From the book reviews:
“This book serves as a complement to the first Machine Learning in Medicine cookbook. … It is aimed primarily at students, health professionals, and researchers with basic experience in statistics who are looking for a quick review prior to using machine learning tools. … This is a valuable resource for those who need a quick reference for machine learning models in medicine.” (Kamesh Sivagnanam, Doody’s Book Reviews, September, 2014)

Caracteristici

Machine learning is an innovation in the medical field So far a book on the subject to a medical audience has not been published The book is time-friendly The book is multipurpose, (1) an introduction for the ignorant, (2) a primer to the inexperienced, (3) a self-assessment handbook for the advanced The authors are from both a mathematical and medical background, which is adequate, because machine learning is a discipline at the interface of bioscience and mathematics The methods selected and described have been tested in real life and by the authors Includes supplementary material: sn.pub/extras