Student’s t-Distribution and Related Stochastic Processes: SpringerBriefs in Statistics
Autor Bronius Grigelionisen Limba Engleză Paperback – 18 sep 2012
Din seria SpringerBriefs in Statistics
- Preț: 370.73 lei
- 15% Preț: 450.64 lei
- 17% Preț: 359.75 lei
- Preț: 403.26 lei
- Preț: 436.91 lei
- Preț: 436.37 lei
- Preț: 371.10 lei
- Preț: 367.71 lei
- Preț: 371.10 lei
- Preț: 350.50 lei
- Preț: 370.94 lei
- Preț: 371.10 lei
- 15% Preț: 452.41 lei
- Preț: 352.28 lei
- Preț: 370.94 lei
- Preț: 370.15 lei
- 5% Preț: 353.45 lei
- Preț: 351.42 lei
- Preț: 371.32 lei
- Preț: 367.53 lei
- Preț: 335.87 lei
- Preț: 435.40 lei
- Preț: 406.09 lei
- 15% Preț: 453.82 lei
- Preț: 370.94 lei
- Preț: 370.52 lei
- Preț: 265.93 lei
- Preț: 347.71 lei
- Preț: 370.15 lei
- Preț: 265.24 lei
- Preț: 370.94 lei
- 5% Preț: 320.50 lei
- Preț: 369.62 lei
- Preț: 267.84 lei
- Preț: 369.62 lei
- Preț: 371.69 lei
- Preț: 369.03 lei
- Preț: 372.06 lei
- Preț: 370.94 lei
- Preț: 371.48 lei
- Preț: 437.28 lei
- Preț: 368.28 lei
- Preț: 337.25 lei
- Preț: 348.72 lei
- Preț: 370.36 lei
- Preț: 264.22 lei
- 5% Preț: 353.82 lei
- Preț: 368.28 lei
- Preț: 433.71 lei
Preț: 266.52 lei
Nou
Puncte Express: 400
Preț estimativ în valută:
51.02€ • 53.11$ • 42.00£
51.02€ • 53.11$ • 42.00£
Carte tipărită la comandă
Livrare economică 01-15 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642311451
ISBN-10: 3642311458
Pagini: 112
Ilustrații: XI, 99 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.16 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria SpringerBriefs in Statistics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642311458
Pagini: 112
Ilustrații: XI, 99 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.16 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria SpringerBriefs in Statistics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Introduction.- Asymptotics.- Preliminaries of Lévy Processes.- Student-Lévy Processes.- Student OU-type Processes.- Student Diffusion Processes.- Miscellanea.- Bessel Functions.- References.- Index.
Recenzii
“It is self-contained and summarizes the most recent results by the author related to t-distribution and their processes. … Grigelionis has pulled together an excellent overview in Student t-distribution and processes, which has not previously been available. The book is written at a highly scholarly level and should appeal to those with an interest in applied probability methodology and applications. It should be for students who have had an advanced course in probability.” (Stergios B. Fotopoulos, Technometrics, Vol. 58 (3), August, 2016)
Notă biografică
Prof. Grigelionis is a senior research fellow at the Institute of Mathematics and Informatics of Vilnius University, member of the Lithuanian Academy of Sciences and the International Statistical Institute. He has done extensive research in stochastic analysis and its applications. These include the semimartingale characterisation of stochastic processes with conditionally independent increments and solutions of stochastic Ito's equations, stochastic nonlinear filtering equations, optimal stopping of stochastic processes - joint research with A. Shiryaev - criteria of weak convergence of stochastic processes - joint research with R. Mikulevičius - etc. His current research topics are the properties of mixed Gaussian distributions and related stochastic processes.
Textul de pe ultima copertă
This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student’s distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Lévy processes as Thorin subordinated Gaussian Lévy processes. A broad class of one-dimensional, strictly stationary diffusions with the Student’s t-marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Lévy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Student’s t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Lévy type processes, the notion of Lévy copulas and the related analogue of Sklar’s theorem are explained.
Caracteristici
In-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student’s distributions Extreme value theory for such diffusions is developed Flexible and statistically tractable Kolmogorov-Pearson diffusions are described Includes supplementary material: sn.pub/extras