Cantitate/Preț
Produs

Statistical Inference for Financial Engineering: SpringerBriefs in Statistics

Autor Masanobu Taniguchi, Tomoyuki Amano, Hiroaki Ogata, Hiroyuki Taniai
en Limba Engleză Paperback – 8 apr 2014
​This monograph provides the fundamentals of statistical inference for financial engineering and covers some selected methods suitable for analyzing financial time series data. In order to describe the actual financial data, various stochastic processes, e.g. non-Gaussian linear processes, non-linear processes, long-memory processes, locally stationary processes etc. are introduced and their optimal estimation is considered as well. This book also includes several statistical approaches, e.g., discriminant analysis, the empirical likelihood method, control variate method, quantile regression, realized volatility etc., which have been recently developed and are considered to be powerful tools for analyzing the financial data, establishing a new bridge between time series and financial engineering.
This book is well suited as a professional reference book on finance, statistics and statistical financial engineering. Readers are expected to have an undergraduate-level knowledge of statistics.
Citește tot Restrânge

Din seria SpringerBriefs in Statistics

Preț: 37221 lei

Nou

Puncte Express: 558

Preț estimativ în valută:
7123 7421$ 5923£

Carte tipărită la comandă

Livrare economică 10-24 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319034966
ISBN-10: 3319034960
Pagini: 128
Ilustrații: X, 118 p. 15 illus., 6 illus. in color.
Dimensiuni: 155 x 235 x 7 mm
Greutate: 0.19 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Seria SpringerBriefs in Statistics

Locul publicării:Cham, Switzerland

Public țintă

Graduate

Cuprins

​Preface.- Features of Financial Data.- Empirical Likelihood Approaches for Financial Returns.- Various Methods for Financial Engineering.- Some Techniques for ARCH Financial Time Series.- Index.

Notă biografică

Dr. Masanobu Taniguchi is a professor at Waseda University. His work focuses on time series, general asymptotic theory and econometrics and he is a fellow of the Institute of Mathematical Statistics (USA).
Dr. Tomoyuki Amano received his PhD from Waseda University, Japan and is now an associate professor at the Faculty of Economics, Wakayama University, Japan. His research interests are in financial time series and function estimators for time series.
Dr. Hiroaki Ogata is an assistant professor at the School of International Liberal Studies, Waseda University. He is currently researching empirical likelihood estimation methods in time series analysis, as well as in stable distributions.
Dr. Hiroyuki Taniai completed his PhD at Université Libre de Bruxelles and is now a research associate at the School of International Liberal Studies, Waseda University. His research interests include semiparametric inference, quantile regression and their applications in finance.

Textul de pe ultima copertă

​This monograph provides the fundamentals of statistical inference for financial engineering and covers some selected methods suitable for analyzing financial time series data. In order to describe the actual financial data, various stochastic processes, e.g. non-Gaussian linear processes, non-linear processes, long-memory processes, locally stationary processes etc. are introduced and their optimal estimation is considered as well. This book also includes several statistical approaches, e.g., discriminant analysis, the empirical likelihood method, control variate method, quantile regression, realized volatility etc., which have been recently developed and are considered to be powerful tools for analyzing the financial data, establishing a new bridge between time series and financial engineering.
This book is well suited as a professional reference book on finance, statistics and statistical financial engineering. Readers are expected to have an undergraduate-level knowledge of statistics.

Caracteristici

Prepares readers for analyzing the specific feature of financial data Provides powerful statistical tools (e.g. the LAN-based approach, empirical likelihood, control variates, quantile regression, etc.) Reflects the latest developments (e.g., stable distributions, market microstructure etc.) Includes supplementary material: sn.pub/extras