Cantitate/Preț
Produs

Modern Methodology and Applications in Spatial-Temporal Modeling: SpringerBriefs in Statistics

Editat de Gareth William Peters, Tomoko Matsui
en Limba Engleză Paperback – 19 ian 2016
​This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant influence in machine learning disciplines. The second chapter takes up non-parametric statistical methods for spatial field reconstruction and exceedance probability estimation based on Gaussian process-based models in the context of wireless sensor network data. The third chapter presents signal-processing methods applied to acoustic mood analysis based on music signal analysis. The fourth chapter covers models that are applicable to time series modeling in the domain of speech and language processing. This includes aspects of factor analysis, independent component analysis in an unsupervised learning setting. The chapter moves on to include more advanced topics on generalized latent variable topic models based on hierarchical Dirichlet processes which recently have been developed in non-parametric Bayesian literature. The final chapter discusses aspects of dependence modeling, primarily focusing on the role of extreme tail-dependence modeling, copulas, and their role in wireless communications system models.
Citește tot Restrânge

Din seria SpringerBriefs in Statistics

Preț: 35142 lei

Nou

Puncte Express: 527

Preț estimativ în valută:
6727 7003$ 5538£

Carte tipărită la comandă

Livrare economică 28 ianuarie-03 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9784431553380
ISBN-10: 443155338X
Pagini: 125
Ilustrații: XV, 111 p. 17 illus., 4 illus. in color.
Dimensiuni: 155 x 235 x 7 mm
Ediția:1st ed. 2015
Editura: Springer
Colecția Springer
Seriile SpringerBriefs in Statistics, JSS Research Series in Statistics

Locul publicării:Tokyo, Japan

Public țintă

Research

Cuprins

1 Nonparametric Bayesian Inference with Kernel Mean Embedding (Kenji Fukumizu).- 2 How to Utilise Sensor Network Data to Efficiently Perform Model Calibration and Spatial Field Reconstruction (Gareth W. Peters, Ido Nevat and Tomoko Matsui).- 3 Speech and Music Emotion Recognition using Gaussian Processes (Konstantin Markov and Tomoko Matsui).- 4 Topic Modeling for Speech and Language Processing (Jen-Tzung Chien).

Caracteristici

Covers specialized topics in spatial-temporal modeling provided by world experts for an introduction to key components Discusses a rigorous probabilistic and statistical framework for a range of contemporary topics of importance to a diverse number of fields in spatial and temporal domains Includes efficient computational statistical methods to perform analysis and inference in large spatial temporal application domains Includes supplementary material: sn.pub/extras