Mathematical Foundations of Network Analysis: Springer Tracts in Natural Philosophy, cartea 16
Autor Paul Slepianen Limba Engleză Paperback – 14 apr 2012
Din seria Springer Tracts in Natural Philosophy
- Preț: 378.92 lei
- Preț: 389.88 lei
- Preț: 376.22 lei
- Preț: 489.59 lei
- Preț: 383.33 lei
- Preț: 386.61 lei
- Preț: 386.00 lei
- Preț: 378.34 lei
- Preț: 380.63 lei
- Preț: 379.48 lei
- Preț: 382.57 lei
- Preț: 377.57 lei
- Preț: 379.86 lei
- Preț: 393.74 lei
- Preț: 376.04 lei
- Preț: 486.16 lei
- Preț: 356.38 lei
- 20% Preț: 562.40 lei
- Preț: 390.63 lei
- Preț: 391.61 lei
- Preț: 453.78 lei
- Preț: 422.31 lei
- 15% Preț: 630.43 lei
- Preț: 383.12 lei
- 15% Preț: 575.41 lei
- Preț: 377.57 lei
- Preț: 382.57 lei
- Preț: 379.86 lei
- 15% Preț: 631.21 lei
- 15% Preț: 634.32 lei
- 15% Preț: 637.78 lei
- 18% Preț: 786.84 lei
- Preț: 391.99 lei
- Preț: 348.98 lei
- Preț: 386.22 lei
- Preț: 379.48 lei
- Preț: 378.54 lei
- 15% Preț: 647.59 lei
- Preț: 378.12 lei
Preț: 383.33 lei
Nou
Puncte Express: 575
Preț estimativ în valută:
73.36€ • 76.68$ • 61.99£
73.36€ • 76.68$ • 61.99£
Carte tipărită la comandă
Livrare economică 06-20 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642874260
ISBN-10: 3642874266
Pagini: 212
Ilustrații: XII, 196 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1968
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Tracts in Natural Philosophy
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642874266
Pagini: 212
Ilustrații: XII, 196 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1968
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Tracts in Natural Philosophy
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Connected Networks.- 1.0 Introduction.- 1.1 Set Theory.- 1.2 Sets with Two or Less Elements.- 1.3 Generalized Union.- 1.4 Relations and Functions.- 1.5 Superpositions and Inverses.- 1.6 Restrictions.- 1.7 Cartesian Products.- 1.8 Some Special Symbols.- 1.9 Finite Sequences.- 1.10 Networks.- 1.11 Geometrical Realization of a Network.- 1.12 Subnetworks.- 1.13 Degree of a Vertex.- 1.14 Path in a Network.- 1.15 Proper Path in a Network.- 1.16 Reduction of a Path to a Proper Path.- 1.17 Connected Networks.- 1.18 Isolated Vertices.- 1.19 Connected Sets of Branches.- 1.20 Path Connected Set of Branches.- 1.21 Union of Connected Sets of Branches.- 1.22 Connectedness of Paths.- 1.23 Component of a Set of Branches.- 1.24 Existence of Components.- 1.25 Partition into Components.- 1.26 Removal of a Branch.- 2. Loops, Trees, and Cut Sets.- 2.0 Introduction.- 2.1 Loop in a Network.- 2.2 Loops.- 2.3 Subloops of a Loop.- 2.4 Branches and Vertices of a Loop.- 2.5 Paths in a Loop.- 2.6 Removal of a Branch from a Loop.- 2.7 Tree in a Network.- 2.8 Trees.- 2.9 Connected Subset of a Tree.- 2.10 Branches and Vertices of a Tree.- 2.11 Number of Vertices of a Connected Set of Branches.- 2.12 Addition of a Branch to a Tree.- 2.13 Existence of Maximal Trees.- 2.14 Cut Set in a Network.- 2.15 Existence of Cut Sets.- 2.16 Alternate Characterization of Cut Sets.- 3. Incidence Functions and Incidence Matrices.- 3.0 Introduction.- 3.1 Incidence Functions.- 3.2 Matrices and Arrays.- 3.3 Submatrices.- 3.4 Determinants.- 3.5 Incidence Matrices.- 3.6 Square Submatrices of an Incidence Matrix.- 3.7 Unimodular Matrices.- 3.8 Laplacian Expansion of a Determinant.- 3.9 Reduced Incidence Matrix of a Tree.- 3.10 Incidence Matrix of a Loop.- 4. Linear Algebra Review.- 4.0 Introduction.- 4.1 The Field of Scalars.- 4.2 Addition and Scalar Multiplication of Functions.- 4.3 Linear Space of 0-Chains.- 4.4 Canonical Base of the Space of 0-Chains.- 4.5 Inner Product.- 4.6 Linear Maps.- 4.7 Transpose of a Linear Map.- 4.8 Direct Sum Decomposition.- 4.9 Dimension and Direct Sum Decomposition.- 5. Boundary Operator and Coboundary Operator.- 5.0 Introduction.- 5.1 Assumptions of This Chapter.- 5.2 Chain Spaces.- 5.3 The Boundary Operator.- 5.4 Boundaries and Cycles.- 5.5 Summation Over Finite Sets.- 5.6 The Coboundary Operator.- 5.7 Coboundaries and Cocycles.- 5.8 Boundaries, Coboundaries, and Inner Products.- 5.9 Orthogonality of Cycles and Coboundaries.- 5.10 Orthogonality of Boundaries and Cocycles.- 5.11 Decomposition of ?(K) into Cycles and Coboundaries.- 5.12 Decomposition of ? (V) into Boundaries and Cocycles.- 5.13 Isomorphism of Coboundaries and Boundaries.- 5.14 Dimension of the Space of Cocycles.- 6. Axioms of Network Analysis.- 6.0 Introduction.- 6.1 Assumptions of This Chapter.- 6.2 Resistive Networks.- 6.3 Currents and Voltages.- 6.4 Ohm’s Law.- 6.5 Sources.- 6.6 Kirchhoff’s Laws for Voltage Sources.- 6.7 Kirchhoff’s Laws for Current Sources.- 7. Existence and Uniqueness of Solutions.- 7.0 Introduction.- 7.1 Assumptions of This Chapter.- 7.2 Linearity of L and H.- 7.3 Existence and Uniqueness with Voltage Sourcess.- 7.4 Existence and Uniqueness with Current Sources.- 7.5 Current Variables.- 7.6 Voltage Variables.- 8. Kirchhoff’s Third and Fourth Laws.- 8.0 Introduction.- 8.1 Assumptions of This Chapter.- 8.2 The Cycle Map.- 8.3 The Chord Map.- 8.4 The Sum of Tree Chord Products.- 8.5 The Current Chain with Voltage Sources.- 8.6 The Coboundary Map.- 8.7 The Tree Branch Map.- 8.8 The Sum of Tree Branch Products.- 8.9 The Voltage Chain with Current Sources.-8.10 Invariance Under Change of Incidence.- References.