Cantitate/Preț
Produs

Viscometric Flows of Non-Newtonian Fluids: Theory and Experiment: Springer Tracts in Natural Philosophy, cartea 5

Autor Bernard D. Coleman, Hershel Markovitz, W. Noll
en Limba Engleză Paperback – 6 mai 2012
We here attempt to give a complete but concise treatment of the theory of steady viscometric flows of simple (non-Newtonian) fluids and to use that theory to discuss the design and interpretation of ex­ periments. We are able to present the theory with less mathematical machinery than was used in our original papers, partly because this Tract has more limited aims than those papers, and partly because we employ a method, found by Noll and published here for the first time, for dealing with visco metric flows without the apparatus of rela­ tive Cauchy-Green tensors and reduced constitutive equations. To make the theory accessible to students not familiar with modern mathematics, we have added to our Tract an appendix explaining some of the mathe­ matical concepts essential to continuum physics. Pittsburgh, July 1965 BERNARD D. COLEMAN HERSHEL MARKOVITZ WALTER NOLL CONTENTS I. Introduction page 1. Limitations of the Classical Theory of Navier and Stokes. 1 5 2. Incompressible Simple Fluids. . . . . . . . . . . . 3. Plan and Scope of this Monograph . . . . . . . . . 7 II. Theory of Incompressible Simple Fluids 4. Kinematics. . . . . . . . . . . . 10 5. The Dynamical Equations . . . . . . . . . . . 12 6. The Principle of Material Objectivity . . . . . . 14 7. The Definition of an Incompressible Simple Fluid . 17 8. Static Behavior of Simple Fluids . . . . . . . . 19 III. General Theory of Viscometric Flows 9. The Kinematics of Simple Shearing Flow 21 10. The Viscometric Functions . . . . . . . . . . 22 11. The Dynamics of Simple Shearing Flow; Viscosity 26 12. The Definition of a Viscometric Flow 29 13. Curvilineal Flows. . . . . . . . 30 1. Kinematical Description . . . .
Citește tot Restrânge

Din seria Springer Tracts in Natural Philosophy

Preț: 37185 lei

Nou

Puncte Express: 558

Preț estimativ în valută:
7116 7392$ 5911£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642886577
ISBN-10: 3642886574
Pagini: 144
Ilustrații: XI, 130 p. 9 illus.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.21 kg
Ediția:Softcover reprint of the original 1st ed. 1966
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Tracts in Natural Philosophy

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

I. Introduction.- 1. Limitations of the Classical Theory of Navier and Stokes.- 2. Incompressible Simple Fluids.- 3. Plan and Scope of this Monograph.- II. Theory of Incompressible Simple Fluids.- 4. Kinematics.- 5. The Dynamical Equations.- 6. The Principle of Material Objectivity.- 7. The Definition of an Incompressible Simple Fluid.- 8. Static Behavior of Simple Fluids.- III. General Theory of Viscometric Flows.- 9. The Kinematics of Simple Shearing Flow.- 10. The Viscometric Functions.- 11. The Dynamics of Simple Shearing Flow; Viscosity.- 12. The Definition of a Viscometric Flow.- 13. Curvilineal Flows.- IV. Special Viscometric Flows.- 14. Flow through a Channel.- 15. General Properties of Helical Flows.- 16. Flows between Concentric Cylinders.- 17. Couette Flow.- 18. Flow between Stationary Concentric Cylinders.- 19. Poiseuille Flow.- 20. Normal Stress Effects at Free Boundaries.- 21. Cone and Plate Flow.- 22. Torsional Flow.- V. Experimental Methods and Results.- 23. General Considerations.- 24. Simple Shearing Flow.- 25. Couette Flow.- 26. Other Flows between Coaxial Cylinders.- 27. Poiseuille Flow.- 28. Cone and Plate Flow.- 29. Torsional Flow.- VI. Historical Remarks.- 30. History of the Development of the Theory.- 31. History of Experiments.- A. Appendix on Mathematical Concepts.- A 1. Vectors.- A 2. Bases, Linear Forms.- A 3. Points, Euclidean Space.- A 4. Tensors.- A 5. Multiplication of Tensors.- A 6. Transposition; Symmetric, Skew, and Orthogonal Tensors.- A 7. Traces and Determinants.- A 8. Point, Vector, and Tensor Functions.- A 9. Deformations, Gradients.- A 10. Coordinates.- A 11. Special Coordinate Systems.- References.