Stability of Fluid Motions II: Springer Tracts in Natural Philosophy, cartea 28
Autor D. D. Josephen Limba Engleză Paperback – 15 dec 2011
Din seria Springer Tracts in Natural Philosophy
- Preț: 359.07 lei
- Preț: 369.43 lei
- Preț: 356.50 lei
- Preț: 463.87 lei
- Preț: 363.25 lei
- Preț: 366.33 lei
- Preț: 365.78 lei
- Preț: 363.25 lei
- Preț: 358.50 lei
- Preț: 360.68 lei
- Preț: 359.58 lei
- Preț: 362.52 lei
- Preț: 357.78 lei
- Preț: 359.95 lei
- Preț: 373.08 lei
- Preț: 356.34 lei
- Preț: 460.61 lei
- Preț: 356.38 lei
- 20% Preț: 562.40 lei
- Preț: 371.08 lei
- Preț: 429.93 lei
- Preț: 400.14 lei
- 15% Preț: 597.17 lei
- Preț: 363.04 lei
- 15% Preț: 545.08 lei
- Preț: 357.78 lei
- Preț: 362.52 lei
- Preț: 359.95 lei
- 15% Preț: 597.91 lei
- 15% Preț: 600.86 lei
- 15% Preț: 604.14 lei
- 18% Preț: 745.27 lei
- Preț: 371.44 lei
- Preț: 330.72 lei
- Preț: 365.98 lei
- Preț: 359.58 lei
- Preț: 358.70 lei
- 15% Preț: 613.42 lei
- Preț: 358.30 lei
Preț: 370.16 lei
Nou
Puncte Express: 555
Preț estimativ în valută:
70.88€ • 76.67$ • 59.06£
70.88€ • 76.67$ • 59.06£
Carte tipărită la comandă
Livrare economică 11-25 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642809965
ISBN-10: 3642809960
Pagini: 296
Ilustrații: XIV, 276 p.
Dimensiuni: 170 x 244 x 20 mm
Greutate: 0.48 kg
Ediția:Softcover reprint of the original 1st ed. 1976
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Tracts in Natural Philosophy
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642809960
Pagini: 296
Ilustrații: XIV, 276 p.
Dimensiuni: 170 x 244 x 20 mm
Greutate: 0.48 kg
Ediția:Softcover reprint of the original 1st ed. 1976
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Tracts in Natural Philosophy
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
VIII. The Oberbeck-Boussinesq Equations. The Stability of Constant Gradient Solutions of the Oberbeck-Boussinesq Equations.- § 54. The Oberbeck-Boussinesq Equations for the Basic Flow.- § 55. Boundary Conditions.- § 56. Equations Governing Disturbances of Solutions of the OB Equations.- §57. The ? Family of Energy Equations.- § 58. Kinematic Admissibility, Sufficient Conditions for Stability.- §59. Motionless Solutions of the Oberbeck-Boussinesq Equations.- § 60. Physical Mechanisms of Instability of the Motionless State.- § 61. Necessary and Sufficient Conditions for Stability.- § 62. The Bénard Problem.- § 63. Plane Couette Flow Heated from below.- § 64. The Buoyancy Boundary Layer.- IX. Global Stability of Constant Temperature-Gradient and Concentration-Gradient States of a Motionless Heterogeneous Fluid.- § 65. Mechanics of the Instability of the Conduction-Diffusion Solutions in a Motionless Heterogeneous Fluid.- § 66. Energy Stability of Heated below and Salted above.- §67. Heated and Salted from below: Linear Theory.- §68. Heated and Salted below: Energy Stability Analysis.- §69. Heated and Salted below: Generalized Energy Analysis.- Addendum for Chapter IX: Generalized Energy Theory of Stability for Hydromagnetic Flows.- X. Two-Sided Bifurcation into Convection.- § 70. The DOB Equations for Convention of a Fluid in a Container of Porous Material.- § 71. The Spectral Problem, the Adjoint Spectral Problem and the Energy Theory of Stability.- § 72. Two-Sided Bifurcation.- § 73. Conditions for the Existence of Two-Sided Bifurcation.- § 74. Two-Sided Bifurcation between Spherical Shells.- § 75. Stability of the Conduction Solution in a Container Heated below and Internally.- § 76. Taylor Series in Two Parameters.- § 77. Two-Sided Bifurcationin a Laterally Unbounded Layer of Fluid.- Addendum to Chapter X: Bifurcation Theory for Multiple Eigenvalues.- XI. Stability of Supercritical Convection-Wave Number Selection Through Stability.- § 78. Statistically Stationary Convection and Steady Convection.- § 79. Stability of Rolls to Noninteracting Three-Dimensional Disturbances.- § 80. Nonlinear Neutral Curves for Three-Dimensional Disturbances of Roll Convection.- §81. Computation of Stability Boundaries by Numerical Methods.- §82. The Amplitude Equation of Newell and Whitehead.- XII. The Variational Theory of Turbulence Applied to Convection in Porous Materials Heated from below.- § 83. Bounds on the Heat Transported by Convection.- § 84. The Form of the Admissible Solenoidal Fluctuation Field Which Minimizes ? [u, ?; ?].- §85. Mathematical Properties of the Multi-? Solutions.- § 86. The single-? Solution and the Situation for Small ?.- §87. Boundary Layers of the Single-? Solution.- §88. The Two-? Solution.- §89. Boundary-Layers of the Multi-? Solutions.- § 90. An Improved Variational Theory Which Makes Use of the Fact that B is Small.- § 91. Numerical Computation of the Single-? and Two-? Solution. Remarks about the Asymptotic Limit ? ? ?.- § 92. The Heat Transport Curve: Comparison of Theory and Experiment.- XIII. Stability Problems for Viscoelastic Fluids.- § 93. Incompressible Simple Fluids. Functional Expansions and Stability.- §94. Stability and Bifurcation of the Rest State.- §95. Stability of Motions of a Viscoelastic Fluid.- XIV. Interfacial Stability.- § 96. The Mechanical Energy Equation for the Two Fluid System.- § 97. Stability of the Interface between Motionless Fluids When the Contact Line is Fixed.- § 98. Stability of a Column of Liquid Resting on a Columnof Air in a Vertical Tube—Static Analysis.- § 99. Stability of a Column of Liquid Resting on a Column of Air in a Vertical Tube—Dynamic Analysis.- Notes for Chapter XIV.- References.