Studies in Non-Linear Stability Theory: Springer Tracts in Natural Philosophy, cartea 6
Autor Wiktor Eckhausen Limba Engleză Paperback – 4 mai 2012
Din seria Springer Tracts in Natural Philosophy
- Preț: 368.15 lei
- Preț: 378.78 lei
- Preț: 365.51 lei
- Preț: 475.64 lei
- Preț: 372.44 lei
- Preț: 375.61 lei
- Preț: 375.03 lei
- Preț: 372.44 lei
- Preț: 367.56 lei
- Preț: 369.80 lei
- Preț: 368.69 lei
- Preț: 371.70 lei
- Preț: 366.83 lei
- Preț: 369.05 lei
- Preț: 382.53 lei
- Preț: 365.35 lei
- Preț: 472.30 lei
- Preț: 356.37 lei
- 20% Preț: 562.40 lei
- Preț: 379.51 lei
- Preț: 380.47 lei
- Preț: 440.84 lei
- Preț: 410.28 lei
- 15% Preț: 612.37 lei
- Preț: 372.23 lei
- 15% Preț: 558.96 lei
- Preț: 366.83 lei
- Preț: 371.70 lei
- Preț: 369.05 lei
- 15% Preț: 613.15 lei
- 15% Preț: 616.15 lei
- 15% Preț: 619.52 lei
- 18% Preț: 764.30 lei
- Preț: 380.84 lei
- Preț: 339.08 lei
- Preț: 375.24 lei
- Preț: 368.69 lei
- 15% Preț: 629.04 lei
- Preț: 367.36 lei
Preț: 367.77 lei
Nou
Puncte Express: 552
Preț estimativ în valută:
70.39€ • 74.25$ • 58.66£
70.39€ • 74.25$ • 58.66£
Carte tipărită la comandă
Livrare economică 03-17 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642883194
ISBN-10: 3642883192
Pagini: 128
Ilustrații: VIII, 118 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.19 kg
Ediția:Softcover reprint of the original 1st ed. 1965
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Tracts in Natural Philosophy
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642883192
Pagini: 128
Ilustrații: VIII, 118 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.19 kg
Ediția:Softcover reprint of the original 1st ed. 1965
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Tracts in Natural Philosophy
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Introduction.- 1.1 The notion of stability.- 1.2 The nature of non-linear stability problems.- 1.3 Formal approach to stability theory.- 2. A Class of Problems in One-Dimensional Space.- 2.1 Preliminary remarks.- 2.2 Formulation.- 2.3 Behaviour and properties of the linearized solutions.- 2.4 Series expansion in the case of self-adjoint operators.- 2.5 Series expansion in the case of not self-adjoint operators.- 2.6 Interpretation of the series expansion in terms of the Green’s function.- 2.7 The system of equations for the amplitude-functions.- 3. Behaviour of Solutions.- 3.1 Formal simplification of the system of equations.- 3.2 Stable and unstable stationary solutions.- 3.3 Effects of interactions. Forced solutions.- 3.4 Analysis of forced solutions.- 3.5 Instability to finite size perturbations.- 3.6 Other types of behaviour.- 4. Asymptotic Methods for Problems in One-Dimensional Space 2S.- 4.1 General outline.- 4.2 Weak stability or instability: the case aij(n) = 0.- 4.3 Weak stability or instability: the case a0 0(0) = 0.- 4.4 Weak stability and instability: the case a0 0(0) ? 0.- 4.5 Method of approximation for the case of simple developed instability.- 4.6 Behaviour of solutions as functions of time.- 5. Analysis of Some One-Dimensional Problems.- 5.1 Introductory remarks.- 5.2 Burgers’ mathematical model of turbulence.- 5.3 Modification of Burgers’ model. The problem of stability.- 5.4 Asymptotic expansions in Burgers’ model.- 5.5 Another simple mathematical model.- 6. A Class of Problems in Two-Dimensional Space.- 6.1 Introductory remarks.- 6.2 Formulation.- 6.3 The problem of stability. Linearized theory.- 6.4 Fourier-analysis of the non-linear stability problem.- 6.5 Orthogonality relations.- 6.6 Initial conditions.- 7. Asymptotic Theory ofPeriodic Solutions.- 7.1 Basic equations and transformations.- 7.2 Forced solutions for the components ?m,m ? 1.- 7.3 Analysis of the component ?1.- 7.4 Further analysis of the forced solutions for ?m, m ? 1.- 7.5 The equations of the asymptotic approximation.- 7.6 Harmonic solutions.- 7.7 A simple example.- 8. Stability of Periodic Solutions.- 8.1 Introduction.- 8.2 Formulation of the stability problem.- 8.3 Analysis of small parameters.- 8.4 Perturbations in the region ?0(k) = 0 (1).- 8.5 Perturbations in the region ?0(k) = 0 (?2).- 8.6 Reduction of the system of equations.- 8.7 Forced solutions for ?? ? and $$ {\psi _{2{k_0}}} \pm \varepsilon \sigma $$.- 8.8 The equations for A0(k,) and A0(k,,).- 8.9 Solution of the stability problem for k0 = kcr.- 8.10 Regions of validity of the asymptotic results.- 8.11 Stability of periodic solutions in the case k0 ? kcr.- 8.12 Summary and interpretation of results.- 9. Periodic Solutions in Poiseuille Flow.- 9.1 Introduction.- 9.2 Formulation of the stability problem.- 9.3 Linearized stability theory.- 9.4 The adjoint linearized problem.- 9.5 Periodic solutions.- 9.6 Discussion of the results.