Cantitate/Preț
Produs

Maximal Cohen-Macaulay Modules over Cohen-Macaulay Rings: London Mathematical Society Lecture Note Series, cartea 146

Autor Y. Yoshino
en Limba Engleză Paperback – 27 iun 1990
The purpose of these notes is to explain in detail some topics on the intersection of commutative algebra, representation theory and singularity theory. They are based on lectures given in Tokyo, but also contain new research. It is the first cohesive account of the area and will provide a useful synthesis of recent research for algebraists.
Citește tot Restrânge

Din seria London Mathematical Society Lecture Note Series

Preț: 41899 lei

Nou

Puncte Express: 628

Preț estimativ în valută:
8019 8358$ 6676£

Carte tipărită la comandă

Livrare economică 04-18 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521356947
ISBN-10: 0521356946
Pagini: 188
Dimensiuni: 153 x 228 x 15 mm
Greutate: 0.29 kg
Ediția:New.
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria London Mathematical Society Lecture Note Series

Locul publicării:Cambridge, United Kingdom

Cuprins

1. Preliminaries; 2. AR sequences and irreducible morphisms; 3. Isolated singularities; 4. Auslander categories; 5. AR quivers; 6. The Brauer-Thrall theorem; 7. Matrix factorizations; 8. Simple singularities; 9. One-dimensional Cm rings of finite representation type; 10. McKay graphs; 11. Two-dimensional CM rings of finite representation type; 12. Knörrer's periodicity; 13. Grothendieck groups; 14. CM modules on quadrics; 15. Graded CM modules on graded CM rings; 16. CM modules on toric singularities; 17. Homogeneous CM rings of finite representation type; Addenda; References.

Recenzii

"In this excellently written book the author presents all the significant algebraic results on this topic....This book gives a careful, self-contained introduction to the theory of maximal Cohen-Macaulay modules readable by research students with thorough knowledge in commutative and general algebra; but it also may serve as a reference work." JÜrgen Herzog, Mathematical Reviews