Multi-Objective Machine Learning: Studies in Computational Intelligence, cartea 16
Editat de Yaochu Jinen Limba Engleză Hardback – 10 feb 2006
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1234.62 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 22 noi 2010 | 1234.62 lei 6-8 săpt. | |
Hardback (1) | 1241.10 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 10 feb 2006 | 1241.10 lei 6-8 săpt. |
Din seria Studies in Computational Intelligence
- 50% Preț: 264.48 lei
- 20% Preț: 1158.26 lei
- 20% Preț: 986.66 lei
- 20% Preț: 1452.76 lei
- 20% Preț: 168.78 lei
- 18% Preț: 1112.30 lei
- 20% Preț: 565.38 lei
- 20% Preț: 649.28 lei
- 20% Preț: 1047.73 lei
- 20% Preț: 1578.96 lei
- 20% Preț: 643.50 lei
- 20% Preț: 657.49 lei
- 20% Preț: 993.28 lei
- 20% Preț: 990.80 lei
- 20% Preț: 989.96 lei
- 20% Preț: 1165.69 lei
- 20% Preț: 1444.52 lei
- 20% Preț: 1041.96 lei
- 20% Preț: 1047.73 lei
- 20% Preț: 1046.06 lei
- 18% Preț: 2500.50 lei
- 20% Preț: 989.13 lei
- 20% Preț: 1165.69 lei
- 20% Preț: 1164.05 lei
- 20% Preț: 1042.79 lei
- 20% Preț: 1460.19 lei
- 18% Preț: 1403.52 lei
- 18% Preț: 1124.92 lei
- 20% Preț: 1039.47 lei
- 20% Preț: 1008.11 lei
- 20% Preț: 1045.25 lei
- 20% Preț: 1275.42 lei
- 20% Preț: 1040.32 lei
- 20% Preț: 988.32 lei
- 20% Preț: 1169.79 lei
- 20% Preț: 1162.37 lei
- 20% Preț: 1059.26 lei
- 20% Preț: 1164.05 lei
- 20% Preț: 1166.52 lei
- 20% Preț: 1459.38 lei
- 18% Preț: 1005.74 lei
- 20% Preț: 997.38 lei
- 20% Preț: 1055.94 lei
- 20% Preț: 1284.47 lei
- 20% Preț: 994.08 lei
- 20% Preț: 1048.72 lei
- 20% Preț: 1066.02 lei
- 20% Preț: 943.78 lei
- 20% Preț: 1173.10 lei
- 20% Preț: 1457.72 lei
Preț: 1241.10 lei
Preț vechi: 1513.53 lei
-18% Nou
Puncte Express: 1862
Preț estimativ în valută:
237.52€ • 245.04$ • 201.02£
237.52€ • 245.04$ • 201.02£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540306764
ISBN-10: 3540306765
Pagini: 660
Ilustrații: XIV, 660 p. 254 illus.
Dimensiuni: 155 x 235 x 43 mm
Greutate: 1.12 kg
Ediția:2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540306765
Pagini: 660
Ilustrații: XIV, 660 p. 254 illus.
Dimensiuni: 155 x 235 x 43 mm
Greutate: 1.12 kg
Ediția:2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Multi-Objective Clustering, Feature Extraction and Feature Selection.- Feature Selection Using Rough Sets.- Multi-Objective Clustering and Cluster Validation.- Feature Selection for Ensembles Using the Multi-Objective Optimization Approach.- Feature Extraction Using Multi-Objective Genetic Programming.- Multi-Objective Learning for Accuracy Improvement.- Regression Error Characteristic Optimisation of Non-Linear Models.- Regularization for Parameter Identification Using Multi-Objective Optimization.- Multi-Objective Algorithms for Neural Networks Learning.- Generating Support Vector Machines Using Multi-Objective Optimization and Goal Programming.- Multi-Objective Optimization of Support Vector Machines.- Multi-Objective Evolutionary Algorithm for Radial Basis Function Neural Network Design.- Minimizing Structural Risk on Decision Tree Classification.- Multi-objective Learning Classifier Systems.- Multi-Objective Learning for Interpretability Improvement.- Simultaneous Generation of Accurate and Interpretable Neural Network Classifiers.- GA-Based Pareto Optimization for Rule Extraction from Neural Networks.- Agent Based Multi-Objective Approach to Generating Interpretable Fuzzy Systems.- Multi-objective Evolutionary Algorithm for Temporal Linguistic Rule Extraction.- Multiple Objective Learning for Constructing Interpretable Takagi-Sugeno Fuzzy Model.- Multi-Objective Ensemble Generation.- Pareto-Optimal Approaches to Neuro-Ensemble Learning.- Trade-Off Between Diversity and Accuracy in Ensemble Generation.- Cooperative Coevolution of Neural Networks and Ensembles of Neural Networks.- Multi-Objective Structure Selection for RBF Networks and Its Application to Nonlinear System Identification.- Fuzzy Ensemble Design through Multi-Objective Fuzzy Rule Selection.- Applications of Multi-Objective Machine Learning.- Multi-Objective Optimisation for Receiver Operating Characteristic Analysis.- Multi-Objective Design of Neuro-Fuzzy Controllers for Robot Behavior Coordination.- Fuzzy Tuning for the Docking Maneuver Controller of an Automated Guided Vehicle.- A Multi-Objective Genetic Algorithm for Learning Linguistic Persistent Queries in Text Retrieval Environments.- Multi-Objective Neural Network Optimization for Visual Object Detection.
Caracteristici
Selected collection of recent research on multi-objective approach to machine learning Recent developments in evolutionary multi-objective optimization Applies the concept of Pareto-optimality to machine learning