Multi-Objective Machine Learning: Studies in Computational Intelligence, cartea 16
Editat de Yaochu Jinen Limba Engleză Paperback – 22 noi 2010
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1169.27 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 22 noi 2010 | 1169.27 lei 6-8 săpt. | |
Hardback (1) | 1175.40 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 10 feb 2006 | 1175.40 lei 6-8 săpt. |
Din seria Studies in Computational Intelligence
- 50% Preț: 264.48 lei
- 70% Preț: 235.75 lei
- 20% Preț: 1096.96 lei
- 20% Preț: 933.82 lei
- 20% Preț: 938.62 lei
- 20% Preț: 1375.82 lei
- 20% Preț: 168.78 lei
- 18% Preț: 1052.70 lei
- 20% Preț: 615.02 lei
- 20% Preț: 991.61 lei
- 20% Preț: 1494.27 lei
- 20% Preț: 609.53 lei
- 20% Preț: 622.36 lei
- 20% Preț: 940.73 lei
- 20% Preț: 938.40 lei
- 20% Preț: 937.60 lei
- 20% Preț: 1103.97 lei
- 20% Preț: 1368.00 lei
- 20% Preț: 986.81 lei
- 20% Preț: 992.29 lei
- 20% Preț: 990.71 lei
- 18% Preț: 2367.90 lei
- 20% Preț: 936.81 lei
- 20% Preț: 1103.97 lei
- 20% Preț: 1102.43 lei
- 20% Preț: 986.93 lei
- 20% Preț: 1381.87 lei
- 18% Preț: 1329.20 lei
- 18% Preț: 1065.39 lei
- 20% Preț: 983.80 lei
- 20% Preț: 954.78 lei
- 20% Preț: 989.95 lei
- 20% Preț: 1207.89 lei
- 20% Preț: 984.59 lei
- 20% Preț: 936.05 lei
- 20% Preț: 1107.87 lei
- 20% Preț: 1100.84 lei
- 20% Preț: 1002.52 lei
- 20% Preț: 1101.66 lei
- 20% Preț: 1104.77 lei
- 20% Preț: 1382.08 lei
- 18% Preț: 952.55 lei
- 20% Preț: 944.62 lei
- 20% Preț: 999.39 lei
- 20% Preț: 941.49 lei
- 20% Preț: 893.87 lei
- 20% Preț: 1110.23 lei
- 20% Preț: 1380.50 lei
- 18% Preț: 1155.07 lei
- 18% Preț: 910.70 lei
Preț: 1169.27 lei
Preț vechi: 1425.94 lei
-18% Nou
Puncte Express: 1754
Preț estimativ în valută:
223.81€ • 240.65$ • 186.58£
223.81€ • 240.65$ • 186.58£
Carte tipărită la comandă
Livrare economică 19 decembrie 24 - 02 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642067969
ISBN-10: 3642067964
Pagini: 676
Ilustrații: XIV, 660 p. 254 illus.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.93 kg
Ediția:Softcover reprint of hardcover 1st ed. 2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642067964
Pagini: 676
Ilustrații: XIV, 660 p. 254 illus.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.93 kg
Ediția:Softcover reprint of hardcover 1st ed. 2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Multi-Objective Clustering, Feature Extraction and Feature Selection.- Feature Selection Using Rough Sets.- Multi-Objective Clustering and Cluster Validation.- Feature Selection for Ensembles Using the Multi-Objective Optimization Approach.- Feature Extraction Using Multi-Objective Genetic Programming.- Multi-Objective Learning for Accuracy Improvement.- Regression Error Characteristic Optimisation of Non-Linear Models.- Regularization for Parameter Identification Using Multi-Objective Optimization.- Multi-Objective Algorithms for Neural Networks Learning.- Generating Support Vector Machines Using Multi-Objective Optimization and Goal Programming.- Multi-Objective Optimization of Support Vector Machines.- Multi-Objective Evolutionary Algorithm for Radial Basis Function Neural Network Design.- Minimizing Structural Risk on Decision Tree Classification.- Multi-objective Learning Classifier Systems.- Multi-Objective Learning for Interpretability Improvement.- Simultaneous Generation of Accurate and Interpretable Neural Network Classifiers.- GA-Based Pareto Optimization for Rule Extraction from Neural Networks.- Agent Based Multi-Objective Approach to Generating Interpretable Fuzzy Systems.- Multi-objective Evolutionary Algorithm for Temporal Linguistic Rule Extraction.- Multiple Objective Learning for Constructing Interpretable Takagi-Sugeno Fuzzy Model.- Multi-Objective Ensemble Generation.- Pareto-Optimal Approaches to Neuro-Ensemble Learning.- Trade-Off Between Diversity and Accuracy in Ensemble Generation.- Cooperative Coevolution of Neural Networks and Ensembles of Neural Networks.- Multi-Objective Structure Selection for RBF Networks and Its Application to Nonlinear System Identification.- Fuzzy Ensemble Design through Multi-Objective Fuzzy Rule Selection.- Applications of Multi-Objective Machine Learning.- Multi-Objective Optimisation for Receiver Operating Characteristic Analysis.- Multi-Objective Design of Neuro-Fuzzy Controllers for Robot Behavior Coordination.- Fuzzy Tuning for the Docking Maneuver Controller of an Automated Guided Vehicle.- A Multi-Objective Genetic Algorithm for Learning Linguistic Persistent Queries in Text Retrieval Environments.- Multi-Objective Neural Network Optimization for Visual Object Detection.
Caracteristici
Selected collection of recent research on multi-objective approach to machine learning Recent developments in evolutionary multi-objective optimization Applies the concept of Pareto-optimality to machine learning