Number Theory in Function Fields: Graduate Texts in Mathematics, cartea 210
Autor Michael Rosenen Limba Engleză Hardback – 8 ian 2002
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 459.15 lei 43-57 zile | |
Springer – 3 dec 2010 | 459.15 lei 43-57 zile | |
Hardback (1) | 538.61 lei 43-57 zile | |
Springer – 8 ian 2002 | 538.61 lei 43-57 zile |
Din seria Graduate Texts in Mathematics
- 17% Preț: 528.66 lei
- Preț: 337.45 lei
- Preț: 383.85 lei
- Preț: 402.87 lei
- 17% Preț: 398.97 lei
- Preț: 355.82 lei
- Preț: 411.83 lei
- Preț: 404.47 lei
- Preț: 289.88 lei
- 17% Preț: 365.79 lei
- 17% Preț: 359.45 lei
- Preț: 450.64 lei
- 15% Preț: 488.70 lei
- 17% Preț: 430.49 lei
- Preț: 431.31 lei
- 13% Preț: 357.75 lei
- Preț: 407.88 lei
- 13% Preț: 352.49 lei
- 13% Preț: 358.86 lei
- 13% Preț: 393.48 lei
- 11% Preț: 351.00 lei
- 17% Preț: 359.58 lei
- Preț: 350.45 lei
- Preț: 399.74 lei
- Preț: 498.91 lei
- 20% Preț: 571.26 lei
- 15% Preț: 546.59 lei
- Preț: 498.69 lei
- 15% Preț: 354.39 lei
- Preț: 313.10 lei
- 13% Preț: 427.39 lei
- 17% Preț: 363.59 lei
- Preț: 340.18 lei
- 17% Preț: 364.47 lei
- 17% Preț: 366.47 lei
- 17% Preț: 366.06 lei
- Preț: 247.59 lei
- 17% Preț: 367.70 lei
- 13% Preț: 356.79 lei
- 17% Preț: 398.78 lei
- 17% Preț: 398.51 lei
- 17% Preț: 496.63 lei
- 15% Preț: 482.97 lei
- Preț: 401.99 lei
- 17% Preț: 366.56 lei
- 20% Preț: 449.73 lei
- Preț: 380.34 lei
- Preț: 364.79 lei
- 17% Preț: 427.27 lei
- Preț: 358.07 lei
Preț: 538.61 lei
Preț vechi: 633.65 lei
-15% Nou
Puncte Express: 808
Preț estimativ în valută:
103.08€ • 107.33$ • 87.11£
103.08€ • 107.33$ • 87.11£
Carte tipărită la comandă
Livrare economică 10-24 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387953359
ISBN-10: 0387953353
Pagini: 380
Ilustrații: XI, 358 p.
Dimensiuni: 156 x 234 x 26 mm
Greutate: 0.73 kg
Ediția:2002
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387953353
Pagini: 380
Ilustrații: XI, 358 p.
Dimensiuni: 156 x 234 x 26 mm
Greutate: 0.73 kg
Ediția:2002
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
1 Polynomials over Finite Fields.- 2 Primes, Arithmetic Functions, and the Zeta Function.- 3 The Reciprocity Law.- 4 Dirichlet L-Series and Primes in an Arithmetic Progression.- 5 Algebraic Function Fields and Global Function Fields.- 6 Weil Differentials and the Canonical Class.- 7 Extensions of Function Fields, Riemann-Hurwitz, and the ABC Theorem.- 8 Constant Field Extensions.- 9 Galois Extensions — Hecke and Artin L-Series.- 10 Artin’s Primitive Root Conjecture.- 11 The Behavior of the Class Group in Constant Field Extensions.- 12 Cyclotomic Function Fields.- 13 Drinfeld Modules: An Introduction.- 14 S-Units, S-Class Group, and the Corresponding L-Functions.- 15 The Brumer-Stark Conjecture.- 16 The Class Number Formulas in Quadratic and Cyclotomic Function Fields.- 17 Average Value Theorems in Function Fields.- Appendix: A Proof of the Function Field Riemann Hypothesis.- Author Index.
Recenzii
From the reviews:
MATHEMATICAL REVIEWS
"Both in the large (choice and arrangement of the material) and in the details (accuracy and completeness of proofs, quality of explanations and motivating remarks), the author did a marvelous job. His parallel treatment of topics…for both number and function fields demonstrates the strong interaction between the respective arithmetics, and allows for motivation on either side."
Bulletin of the AMS
"… Which brings us to the book by Michael Rosen. In it, one has an excellent (and, to the author's knowledge, unique) introduction to the global theory of function fields covering both the classical theory of Artin, Hasse, Weil and presenting an introduction to Drinfeld modules (in particular, the Carlitz module and its exponential). So the reader will find the basic material on function fields and their history (i.e., Weil differentials, the Riemann-Roch Theorem etc.) leading up to Bombieri's proof of the Riemann hypothesis first established by Weil. In addition one finds chapters on Artin's primitive root Conjecture for function fields, Brumer-Stark theory, the ABC Conjecture, results on class numbers and so on. Each chapter contains a list of illuminating exercises. Rosen's book is perfect for graduate students, as well as other mathematicians, fascinated by the amazing similarities between number fields and function fields."
David Goss (Ohio State University)
MATHEMATICAL REVIEWS
"Both in the large (choice and arrangement of the material) and in the details (accuracy and completeness of proofs, quality of explanations and motivating remarks), the author did a marvelous job. His parallel treatment of topics…for both number and function fields demonstrates the strong interaction between the respective arithmetics, and allows for motivation on either side."
Bulletin of the AMS
"… Which brings us to the book by Michael Rosen. In it, one has an excellent (and, to the author's knowledge, unique) introduction to the global theory of function fields covering both the classical theory of Artin, Hasse, Weil and presenting an introduction to Drinfeld modules (in particular, the Carlitz module and its exponential). So the reader will find the basic material on function fields and their history (i.e., Weil differentials, the Riemann-Roch Theorem etc.) leading up to Bombieri's proof of the Riemann hypothesis first established by Weil. In addition one finds chapters on Artin's primitive root Conjecture for function fields, Brumer-Stark theory, the ABC Conjecture, results on class numbers and so on. Each chapter contains a list of illuminating exercises. Rosen's book is perfect for graduate students, as well as other mathematicians, fascinated by the amazing similarities between number fields and function fields."
David Goss (Ohio State University)
Textul de pe ultima copertă
Elementary number theory is concerned with arithmetic properties of the ring of integers. Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting, for example, analogues of the theorems of Fermat and Euler, Wilsons theorem, quadratic (and higher) reciprocity, the prime number theorem, and Dirichlets theorem on primes in an arithmetic progression. After presenting the required foundational material on function fields, the later chapters explore the analogy between global function fields and algebraic number fields. A variety of topics are presented, including: the ABC-conjecture, Artins conjecture on primitive roots, the Brumer-Stark conjecture, Drinfeld modules, class number formulae, and average value theorems.
The first few chapters of this book are accessible to advanced undergraduates. The later chapters are designed for graduate students and professionals in mathematics and related fields who want to learn more about the very fruitful relationship between number theory in algebraic number fields and algebraic function fields. In this book many paths are set forth for future learning and exploration.
Michael Rosen is Professor of Mathematics at Brown University, where hes been since 1962. He has published over 40 research papers and he is the co-author of A Classical Introduction to Modern Number Theory, with Kenneth Ireland. He received the Chauvenet Prize of the Mathematical Association of America in 1999 and the Philip J. Bray Teaching Award in 2001.
The first few chapters of this book are accessible to advanced undergraduates. The later chapters are designed for graduate students and professionals in mathematics and related fields who want to learn more about the very fruitful relationship between number theory in algebraic number fields and algebraic function fields. In this book many paths are set forth for future learning and exploration.
Michael Rosen is Professor of Mathematics at Brown University, where hes been since 1962. He has published over 40 research papers and he is the co-author of A Classical Introduction to Modern Number Theory, with Kenneth Ireland. He received the Chauvenet Prize of the Mathematical Association of America in 1999 and the Philip J. Bray Teaching Award in 2001.
Caracteristici
Includes supplementary material: sn.pub/extras