Cantitate/Preț
Produs

Physics of Quantum Electron Devices: Springer Series in Electronics and Photonics, cartea 28

Editat de Federico Capasso
en Limba Engleză Paperback – 6 dec 2011
The ability to engineer the bandstructure and the wavefunction over length scales previously inaccessible to technology using artificially structured materials and nanolithography has led to a new class of electron semiconductor devices whose operation is controlled by quantum effects. These structures not only represent exciting tools for investigating new quantum phenomena in semiconductors, but also offer exciting opportunities for applications. This book gives the first comprehensive treatment of the physics of quantum electron devices. This interdisciplinary field, at the junction between material science, physics and technology, has witnessed an explosive growth in recent years. This volume presents a detailed coverage of the physics of the underlying phenomena, and their device and circuit applications, together with fabrication and growth technology.
Citește tot Restrânge

Din seria Springer Series in Electronics and Photonics

Preț: 38752 lei

Nou

Puncte Express: 581

Preț estimativ în valută:
7416 7704$ 6160£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642747533
ISBN-10: 3642747531
Pagini: 424
Ilustrații: XVI, 403 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Electronics and Photonics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1. Introduction.- 1.1 A Perspective on the Evolution of Quantum Semiconductor Devices.- 1.2 Outline of the Book.- References.- 2. The Nature of Molecular Beam Epitaxy and Consequences for Quantum Microstructures.- 2.1 Dimensional Confinement and Device Concepts.- 2.2 Molecular Beam Epitaxy.- 2.3 The Surface Kinetic Processes and Computer Simulations of Growth.- 2.4 Quantum Wells: Growth and Photoluminescence.- 2.5 Concluding Remarks.- 2.6 Recent Advances.- References.- 3. Nanolithography for Ultra-Small Structure Fabrication.- 3.1 Overview.- 3.2 Resolution Limits of Lithographic Processes.- 3.3 Pattern Transfer.- References.- 4. Theory of Resonant Tunnelling and Surface Superlattices.- 4.1 Tunnelling Probabilities.- 4.2 Tunnelling Time.- 4.3 Pseudo-Device Calculations.- 4.4 Lateral Superlattices.- References.- 5. The Investigation of Single and Double Barrier (Resonant Tunnelling) Heterostructures Using High Magnetic Fields.- 5.1 Background.- 5.2 LO Phonon Structure in the I(V) and C(V) Curves of Reverse-Biased Heterostructures.- 5.3 Magnetotunnelling from the 2D Electron Gas in Accumulated (InGa)As/InP Structures Grown by MBE and MOCVD.- 5.4 Observation of Magnetoquantized Interface States by Electron Tunnelling in Single-Barrier n? (InGa)As/InP/n+ (InGa)As Heterostructures.- 5.5 Box Quantised States.- 5.6 Double Barrier Resonant Tunnelling Devices.- References.- 6. Microwave and Millimeter-Wave Resonant-Tunnelling Devices.- 6.1 Speed of Response.- 6.2 Resonant-Tunnelling Oscillators.- 6.3 Self-Oscillating Mixers.- 6.4 Resistive Multipliers.- 6.5 Variable Absolute Negative Conductance.- 6.6 Persistent Photoconductivity and a Resonant-Tunnelling Transistor.- 6.7 A Look at Resonant-Tunnelling Theory.- 6.8 Concluding Remarks.- Note Added in Proof.- List of Symbols.-References.- 7. Resonant Tunnelling and Superlattice Devices: Physics and Circuits.- 7.1 Resonant Tunnelling Through Double Barriers and Superlattices.- 7.2 Application of Resonant Tunnelling: Transistors and Circuits.- References.- 8. Resonant-Tunnelling Hot Electron Transistors (RHET).- 8.1 RHET Operation.- 8.2 RHET Technology Using GaAs/AlGaAs Heterostructures.- 8.3 InGaAs-Based Material Evaluation.- 8.4 RHET Technology Using InGaAs-Based Materials.- 8.5 Theoretical Analyses of RHET Performance.- 8.6 Summary.- References.- 9. Ballistic Electron Transport in Hot Electron Transistors.- 9.1 Ballistic Transport.- 9.2 Hot Electron Transistors.- 9.3 Hot Electron Injectors.- 9.4 Energy Spectroscopy.- 9.5 Electron Coherent Effects in the THETA Device.- 9.6 Transfer to the L Satellite Valleys.- 9.7 The THETA as a Practical Device.- References.- 10. Quantum Interference Devices.- 10.1 Background.- 10.2 Two-Port Quantum Devices.- 10.3 Multiport Quantum Devices.- Appendix: Aharonov — Bohm Phase-shift in an Electric or Magnetic Field.- References.- Additional References.- 11. Carrier Confinement to One and Zero Degrees of Freedom.- 11.1 Experimental Methods.- 11.2 Discussion of Experimental Results.- 11.3 Conclusions.- References.- 12. Quantum Effects in Quasi-One-Dimensional MOSFETs.- 12.1 Background.- 12.2 MOSFET Length Scales.- 12.3 Special MOSFET Geometries.- 12.4 Strictly 1D Transport.- 12.5 Multichannel Transport (Particle in a Box?).- 12.6 Averaged Quantum Diffusion.- 12.7 Mesoscopic Quantum Diffusion (Universal Conductance Fluctuations).- 12.8 Effect of One Scatterer.- 12.9 Conclusion.- References.