Cantitate/Preț
Produs

Regular and Irregular Holonomic D-Modules: London Mathematical Society Lecture Note Series, cartea 433

Autor Masaki Kashiwara, Pierre Schapira
en Limba Engleză Paperback – 25 mai 2016
D-module theory is essentially the algebraic study of systems of linear partial differential equations. This book, the first devoted specifically to holonomic D-modules, provides a unified treatment of both regular and irregular D-modules. The authors begin by recalling the main results of the theory of indsheaves and subanalytic sheaves, explaining in detail the operations on D-modules and their tempered holomorphic solutions. As an application, they obtain the Riemann–Hilbert correspondence for regular holonomic D-modules. In the second part of the book the authors do the same for the sheaf of enhanced tempered solutions of (not necessarily regular) holonomic D-modules. Originating from a series of lectures given at the Institut des Hautes Études Scientifiques in Paris, this book is addressed to graduate students and researchers familiar with the language of sheaves and D-modules, in the derived sense.
Citește tot Restrânge

Din seria London Mathematical Society Lecture Note Series

Preț: 41507 lei

Nou

Puncte Express: 623

Preț estimativ în valută:
7944 8280$ 6613£

Carte tipărită la comandă

Livrare economică 04-18 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781316613450
ISBN-10: 1316613453
Pagini: 117
Dimensiuni: 151 x 227 x 7 mm
Greutate: 0.19 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria London Mathematical Society Lecture Note Series

Locul publicării:Cambridge, United Kingdom

Cuprins

Introduction; 1. A review on sheaves and D-modules; 2. Indsheaves; 3. Tempered solutions of D-modules; 4. Regular holonomic D-modules; 5. Indsheaves on bordered spaces; 6. Enhanced indsheaves; 7. Holonomic D-modules; 8. Integral transforms; References; List of notations; Index.

Notă biografică


Descriere

A unified treatment of the Riemann–Hilbert correspondence for (not necessarily regular) holonomic D-modules using indsheaves.