Second Course in Ordinary Differential Equations for Scientists and Engineers: Universitext
Autor Mayer Humi, William Milleren Limba Engleză Paperback – 16 dec 1987
Din seria Universitext
- 17% Preț: 361.80 lei
- 15% Preț: 523.24 lei
- 15% Preț: 532.43 lei
- 15% Preț: 490.35 lei
- 17% Preț: 427.32 lei
- 17% Preț: 364.56 lei
- 17% Preț: 366.00 lei
- 14% Preț: 385.36 lei
- Preț: 648.02 lei
- 15% Preț: 475.61 lei
- Preț: 345.00 lei
- 17% Preț: 431.50 lei
- Preț: 372.46 lei
- 19% Preț: 393.94 lei
- Preț: 396.89 lei
- Preț: 374.67 lei
- 13% Preț: 358.08 lei
- 17% Preț: 364.81 lei
- Preț: 356.93 lei
- 17% Preț: 426.76 lei
- Preț: 610.45 lei
- Preț: 469.58 lei
- 17% Preț: 427.68 lei
- 20% Preț: 569.54 lei
- 15% Preț: 709.56 lei
- 17% Preț: 369.06 lei
- 14% Preț: 346.51 lei
- 17% Preț: 394.41 lei
- Preț: 375.54 lei
- Preț: 269.57 lei
- Preț: 365.59 lei
- Preț: 429.10 lei
- Preț: 368.00 lei
- 15% Preț: 513.58 lei
- 15% Preț: 477.30 lei
- 15% Preț: 456.91 lei
- Preț: 375.06 lei
- Preț: 465.86 lei
- 15% Preț: 619.15 lei
- Preț: 399.41 lei
- 15% Preț: 579.50 lei
- 20% Preț: 490.98 lei
- 15% Preț: 566.14 lei
- Preț: 367.27 lei
- Preț: 471.42 lei
- Preț: 475.29 lei
- 20% Preț: 319.76 lei
- 15% Preț: 455.48 lei
- Preț: 443.56 lei
Preț: 382.45 lei
Nou
Puncte Express: 574
Preț estimativ în valută:
73.20€ • 77.22$ • 60.100£
73.20€ • 77.22$ • 60.100£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387966762
ISBN-10: 0387966765
Pagini: 441
Ilustrații: XI, 441 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
ISBN-10: 0387966765
Pagini: 441
Ilustrații: XI, 441 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
O: Review.- 1. Solution of second order ordinary differential equations by series.- 2. Regular singular points.- 3. Series solutions near a regular singular point.- 1: Boundary Value Problems.- 1. Introduction.- 2. Adjoint differential equations and boundary conditions.- 3. Self -adjoint systems.- 4. A broader approach to self-adjoint systems.- 5. Sturm-Liouvi1 le theory.- 6. Introduction to orthogonality and completeness.- 2: Special Functions.- 1. Hypergeometric series.- 2. Bessel functions.- 3. Legendre polynomials.- 4. Gamma function.- 3: Systems of Ordinary Differential Equations.- 1. Introduction.- 2. Method of elimination.- 3. Some linear algebra.- 4. Linear systems with constant coefficients.- 5. Linear systems with variable coefficients.- 6. Elements of linear control theory.- 7. The Laplace transform.- 4: Applications of Symmetry Principles to Differential Equations.- 1. Introduction.- 2. Lie groups.- 3. Lie algebras.- 4. Prolongation of the action.- 5. Invariant differential equations.- 6. The factor ization method.- 7. Examples of factorizable equations.- 5: Equations with Periodic Coefficients.- 1. Introduction.- 2. Floquet theory for periodic equations.- 3. Hill’s and Mathieu equations.- 6: Green’s Functions.- 1. Introduction.- 2. General definition of Green’s function.- 3. The interpretation of Green’s functions.- 4. Generalized functions.- 5. Elementary solutions and Green’s functions.- 6. Eigenfunetion representation of Green’s functions.- 7. Integral equations.- 7: Perturbation Theory.- 1. Preliminaries.- 2. Some basic ideas-regular perturbations.- 3. Singular perturbations.- 4. Boundary layers.- 5. Other perturbation methods.- *6. Perturbations and partial differential equations.- *7. Perturbation of eigenvalue problems.- *8. The Zeemanand Stark effects.- 8: Phase Diagrams and Stability.- 1. General introduction.- 2. Systems of two equations.- 3. Some general theory.- 4. Almost linear systems.- 5. Almost linear systems in R2.- 6. Liapounov direct method.- 7. Periodic solutions (limit cycles).- 9: Catastrophes and Bifurcations.- 1. Catastrophes and structural stability.- 2. Classification of catastrophe sets.- 3. Some examples of bifurcations.- 4. Bifurcation of equilibrium states in one dimension.- 5. Hopf bifurcation.- 6. Bifurcations in R.- 10: Sturmian Theory.- 1. Some mathematical preliminaries.- 2. Sturmian theory for first order equations.- 3. Sturmian theory for second order equations.- 4. Prufer transformations.