Supported Layered Double Hydroxides as CO2 Adsorbents for Sorption-enhanced H2 Production: Springer Theses
Autor Diana Iruretagoyena Ferreren Limba Engleză Hardback – 26 iul 2016
This thesis presents a combination of material synthesis and characterization with process modeling. In it, the CO2 adsorption properties of hydrotalcites are enhanced through the production of novel supported hybrids (carbon nanotubes and graphene oxide) and the promotion with alkali metals. Hydrogen is regarded as a sustainable energy carrier, since the end users produce no carbon emissions. However, given that most of the hydrogen produced worldwide comes from fossil fuels, its potential as a carbon-free alternative depends on the ability to capture the carbon dioxide released during manufacture. Sorption-enhanced hydrogen production, in which CO2 is removed as it is formed, can make a major contribution to achieving this. The challenge is to find solid adsorbents with sufficient CO2 capacity that can work in the right temperature window over repeated adsorption-desorption cycles.
The book presents a highly detailed characterization of the materials,together with an accurate measurement of their adsorption properties under dry conditions and in the presence of steam. It demonstrates that even small quantities of graphene oxide provide superior thermal stability to hydrotalcites due to their compatible layered structure, making them well suited as volume-efficient adsorbents for CO2. Lastly, it identifies suitable catalysts for the overall sorption-enhanced water gas shift process.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 625.20 lei 43-57 zile | |
Springer International Publishing – 31 mai 2018 | 625.20 lei 43-57 zile | |
Hardback (1) | 631.27 lei 43-57 zile | |
Springer International Publishing – 26 iul 2016 | 631.27 lei 43-57 zile |
Din seria Springer Theses
- 5% Preț: 1130.67 lei
- Preț: 382.04 lei
- 15% Preț: 633.86 lei
- 18% Preț: 1195.68 lei
- Preț: 391.27 lei
- 18% Preț: 977.66 lei
- 18% Preț: 921.98 lei
- Preț: 544.53 lei
- 15% Preț: 630.15 lei
- 15% Preț: 629.70 lei
- 15% Preț: 626.33 lei
- 20% Preț: 558.82 lei
- 18% Preț: 924.30 lei
- 18% Preț: 1093.64 lei
- 15% Preț: 627.11 lei
- 15% Preț: 627.11 lei
- Preț: 276.68 lei
- 15% Preț: 623.58 lei
- 18% Preț: 873.12 lei
- 15% Preț: 627.93 lei
- Preț: 381.87 lei
- 20% Preț: 563.89 lei
- Preț: 385.44 lei
- 15% Preț: 625.02 lei
- 15% Preț: 628.89 lei
- 18% Preț: 1089.74 lei
- 20% Preț: 551.36 lei
- 18% Preț: 1081.25 lei
- 18% Preț: 1087.42 lei
- 18% Preț: 1201.06 lei
- 18% Preț: 925.84 lei
- 18% Preț: 925.06 lei
- 15% Preț: 627.11 lei
- 18% Preț: 1204.16 lei
- 15% Preț: 627.11 lei
- 18% Preț: 1192.58 lei
- 15% Preț: 623.93 lei
- 18% Preț: 980.60 lei
- 15% Preț: 623.11 lei
- 15% Preț: 627.93 lei
- Preț: 379.42 lei
- 18% Preț: 979.20 lei
- Preț: 377.51 lei
- Preț: 377.51 lei
- 18% Preț: 1087.42 lei
- 18% Preț: 1088.21 lei
- Preț: 379.22 lei
- 15% Preț: 624.26 lei
- 20% Preț: 554.20 lei
- 20% Preț: 555.57 lei
Preț: 631.27 lei
Preț vechi: 742.68 lei
-15% Nou
Puncte Express: 947
Preț estimativ în valută:
120.81€ • 125.49$ • 100.35£
120.81€ • 125.49$ • 100.35£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319412757
ISBN-10: 3319412752
Pagini: 246
Ilustrații: XXXVII, 209 p. 96 illus., 94 illus. in color.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.53 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
ISBN-10: 3319412752
Pagini: 246
Ilustrații: XXXVII, 209 p. 96 illus., 94 illus. in color.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.53 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Literature Review.- Experimental Methods.- Layered Double Hydroxides Supported on Multi-Walled Carbon Nanotubes.- Layered Double Hydroxides Supported on Graphene Oxide for CO2 Adsorption.- Influence of Alkali Metals on Layered Double Hydroxides Supported on Graphene Oxide for CO2 Adsorption.- CO2 Adsorption on Unsupported and Graphene Oxide Supported Layered Double Hydroxides in a Fixed-Bed.- Sorption-Enhanced Methanol-to-Shift for H2 Production: Thermodynamics and Catalyst Selection.- Conclusions and Future Work.
Notă biografică
Dr. Diana Iruretagoyena studied for a BSc and MEng in Chemical Engineering at National Autonomous University of Mexico (UNAM). In 2014, she completed her PhD at Imperial College London under the supervision of Prof. David Chadwick and Prof. Klaus Hellgardt and in collaboration with Prof. Milo Shaffer. Her research focused on the study of novel CO2 adsorbents and catalysts for sorption-enhanced hydrogen production. The work has resulted in a number of scientific publications and has been presented at international conferences and seminars. In addition, she was awarded the Julia Higgins Centenary Prize from the Department of Chemical Engineering for her outstanding work in her postgraduate studies. Currently, she is working as Research Associate at Imperial College London in the field of Reaction Engineering and Catalysis.
Textul de pe ultima copertă
This thesis presents a combination of material synthesis and characterization with process modeling. In it, the CO2 adsorption properties of hydrotalcites are enhanced through the production of novel supported hybrids (carbon nanotubes and graphene oxide) and the promotion with alkali metals. Hydrogen is regarded as a sustainable energy carrier, since the end users produce no carbon emissions. However, given that most of the hydrogen produced worldwide comes from fossil fuels, its potential as a carbon-free alternative depends on the ability to capture the carbon dioxide released during manufacture. Sorption-enhanced hydrogen production, in which CO2 is removed as it is formed, can make a major contribution to achieving this. The challenge is to find solid adsorbents with sufficient CO2 capacity that can work in the right temperature window over repeated adsorption-desorption cycles.
The book presents a highly detailed characterization of the materials,together with an accurate measurement of their adsorption properties under dry conditions and in the presence of steam. It demonstrates that even small quantities of graphene oxide provide superior thermal stability to hydrotalcites due to their compatible layered structure, making them well suited as volume-efficient adsorbents for CO2. Lastly, it identifies suitable catalysts for the overall sorption-enhanced water gas shift process.
Caracteristici
Nominated as an outstanding Ph.D. thesis by Imperial College London, UK Presents a combination of material synthesis and characterization with process modeling Outlines the equilibria and kinetics of CO2 adsorption on novel supported hydrotalcites Provides a thorough and extensive literature review Includes supplementary material: sn.pub/extras