The Jackknife and Bootstrap: Springer Series in Statistics
Autor Jun Shao, Dongsheng Tuen Limba Engleză Paperback – 4 oct 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 2056.94 lei 6-8 săpt. | |
Springer – 4 oct 2012 | 2056.94 lei 6-8 săpt. | |
Hardback (1) | 2062.04 lei 6-8 săpt. | |
Springer – 21 iul 1995 | 2062.04 lei 6-8 săpt. |
Din seria Springer Series in Statistics
- 18% Preț: 696.54 lei
- 20% Preț: 630.97 lei
- 20% Preț: 816.43 lei
- 20% Preț: 1000.84 lei
- Preț: 383.00 lei
- 20% Preț: 697.13 lei
- 20% Preț: 524.37 lei
- 20% Preț: 881.51 lei
- 18% Preț: 1212.03 lei
- 18% Preț: 947.61 lei
- 18% Preț: 937.13 lei
- 18% Preț: 778.18 lei
- 15% Preț: 634.96 lei
- 18% Preț: 1197.68 lei
- 15% Preț: 633.06 lei
- 15% Preț: 634.00 lei
- 15% Preț: 633.06 lei
- 18% Preț: 1361.41 lei
- 15% Preț: 639.63 lei
- 18% Preț: 1091.92 lei
- 18% Preț: 933.10 lei
- 18% Preț: 1365.00 lei
- 18% Preț: 1529.98 lei
- 18% Preț: 1206.48 lei
- 15% Preț: 503.28 lei
- 18% Preț: 875.61 lei
- 15% Preț: 636.73 lei
- 18% Preț: 987.24 lei
- 18% Preț: 1089.12 lei
- 18% Preț: 1204.16 lei
- 18% Preț: 874.65 lei
- 18% Preț: 894.75 lei
- 18% Preț: 924.75 lei
- Preț: 383.74 lei
- Preț: 383.37 lei
- 18% Preț: 1362.82 lei
- Preț: 383.00 lei
- 18% Preț: 875.73 lei
- 18% Preț: 941.15 lei
- 18% Preț: 1220.07 lei
- 18% Preț: 945.00 lei
- 15% Preț: 630.15 lei
- 18% Preț: 1640.70 lei
- 15% Preț: 630.83 lei
- 15% Preț: 574.55 lei
- 18% Preț: 984.62 lei
- 15% Preț: 630.33 lei
- 18% Preț: 790.07 lei
- 18% Preț: 712.93 lei
Preț: 2056.94 lei
Preț vechi: 2508.46 lei
-18% Nou
Puncte Express: 3085
Preț estimativ în valută:
393.70€ • 409.22$ • 326.12£
393.70€ • 409.22$ • 326.12£
Carte tipărită la comandă
Livrare economică 04-18 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461269038
ISBN-10: 1461269032
Pagini: 540
Ilustrații: XVII, 517 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.75 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 1461269032
Pagini: 540
Ilustrații: XVII, 517 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.75 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Introduction.- 1.1 Statistics and Their Sampling Distributions.- 1.2 The Traditional Approach.- 1.3 The Jackknife.- 1.4 The Bootstrap.- 1.5 Extensions to Complex Problems.- 1.6 Scope of Our Studies.- 2. Theory for the Jackknife.- 2.1 Variance Estimation for Functions of Means.- 2.2 Variance Estimation for Functionals.- 2.3 The Delete-d Jackknife.- 2.4 Other Applications.- 2.5 Conclusions and Discussions.- 3. Theory for the Bootstrap.- 3.1 Techniques in Proving Consistency.- 3.2 Consistency: Some Major Results.- 3.3 Accuracy and Asymptotic Comparisons.- 3.4 Fixed Sample Performance.- 3.5 Smoothed Bootstrap.- 3.6 Nonregular Cases.- 3.7 Conclusions and Discussions.- 4. Bootstrap Confidence Sets and Hypothesis Tests.- 4.1 Bootstrap Confidence Sets.- 4.2 Asymptotic Theory.- 4.3 The Iterative Bootstrap and Other Methods.- 4.4 Empirical Comparisons.- 4.5 Bootstrap Hypothesis Tests.- 4.6 Conclusions and Discussions.- 5. Computational Methods.- 5.1 The Delete-1 Jackknife.- 5.2 The Delete-d Jackknife.- 5.3 Analytic Approaches for the Bootstrap.- 5.4 Simulation Approaches for the Bootstrap.- 5.5 Conclusions and Discussions.- 6. Applications to Sample Surveys.- 6.1 Sampling Designs and Estimates.- 6.2 Resampling Methods.- 6.3 Comparisons by Simulation.- 6.4 Asymptotic Results.- 6.5 Resampling Under Imputation.- 6.6 Conclusions and Discussions.- 7. Applications to Linear Models.- 7.1 Linear Models and Regression Estimates.- 7.2 Variance and Bias Estimation.- 7.3 Inference and Prediction Using the Bootstrap.- 7.4 Model Selection.- 7.5 Asymptotic Theory.- 7.6 Conclusions and Discussions.- 8. Applications to Nonlinear, Nonparametric, and Multivariate Models.- 8.1 Nonlinear Regression.- 8.2 Generalized Linear Models.- 8.3 Cox’s Regression Models.- 8.4 Kernel Density Estimation.-8.5 Nonparametric Regression.- 8.6 Multivariate Analysis.- 8.7 Conclusions and Discussions.- 9. Applications to Time Series and Other Dependent Data.- 9.1 m-Dependent Data.- 9.2 Markov Chains.- 9.3 Autoregressive Time Series.- 9.4 Other Time Series.- 9.5 Stationary Processes.- 9.6 Conclusions and Discussions.- 10. Bayesian Bootstrap and Random Weighting.- 10.1 Bayesian Bootstrap.- 10.2 Random Weighting.- 10.3 Random Weighting for Functional and Linear Models.- 10.4 Empirical Results for Random Weighting.- 10.5 Conclusions and Discussions.- Appendix A. Asymptotic Results.- A.1 Modes of Convergence.- A.2 Convergence of Transformations.- A.4 The Borel-Cantelli Lemma.- A.5 The Law of Large Numbers.- A.6 The Law of the Iterated Logarithm.- A.7 Uniform Integrability.- A.8 The Central Limit Theorem.- A.9 The Berry-Esséen Theorem.- A.10 Edgeworth Expansions.- A.11 Cornish-Fisher Expansions.- Appendix B. Notation.- References.- Author Index.