The Monge-Ampère Equation: Progress in Nonlinear Differential Equations and Their Applications, cartea 89
Autor Cristian E. Gutiérrezen Limba Engleză Paperback – 16 iun 2018
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1090.44 lei 6-8 săpt. | |
Springer International Publishing – 16 iun 2018 | 1090.44 lei 6-8 săpt. | |
Hardback (1) | 1236.82 lei 6-8 săpt. | |
Springer International Publishing – 2 noi 2016 | 1236.82 lei 6-8 săpt. |
Din seria Progress in Nonlinear Differential Equations and Their Applications
- Preț: 281.13 lei
- 15% Preț: 632.51 lei
- 18% Preț: 723.00 lei
- 18% Preț: 878.33 lei
- 18% Preț: 1110.93 lei
- 15% Preț: 576.37 lei
- 18% Preț: 1109.51 lei
- 18% Preț: 887.96 lei
- 18% Preț: 775.26 lei
- 18% Preț: 770.91 lei
- Preț: 392.44 lei
- 15% Preț: 629.92 lei
- 18% Preț: 995.74 lei
- 18% Preț: 993.11 lei
- 18% Preț: 937.87 lei
- Preț: 376.93 lei
- 15% Preț: 576.99 lei
- 5% Preț: 646.29 lei
- 15% Preț: 624.77 lei
- Preț: 380.13 lei
- Preț: 395.82 lei
- 15% Preț: 692.50 lei
- 15% Preț: 510.74 lei
- Preț: 379.54 lei
- Preț: 384.47 lei
- Preț: 387.31 lei
- 18% Preț: 938.83 lei
- Preț: 381.48 lei
- 15% Preț: 633.95 lei
- 18% Preț: 875.34 lei
- 15% Preț: 631.37 lei
- Preț: 385.42 lei
- 18% Preț: 949.85 lei
- 18% Preț: 776.03 lei
Preț: 1090.44 lei
Preț vechi: 1329.80 lei
-18% Nou
Puncte Express: 1636
Preț estimativ în valută:
208.75€ • 216.99$ • 173.08£
208.75€ • 216.99$ • 173.08£
Carte tipărită la comandă
Livrare economică 07-21 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319828060
ISBN-10: 3319828061
Pagini: 216
Ilustrații: XIV, 216 p. 6 illus., 3 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.45 kg
Ediția:Softcover reprint of the original 2nd ed. 2016
Editura: Springer International Publishing
Colecția Birkhäuser
Seria Progress in Nonlinear Differential Equations and Their Applications
Locul publicării:Cham, Switzerland
ISBN-10: 3319828061
Pagini: 216
Ilustrații: XIV, 216 p. 6 illus., 3 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.45 kg
Ediția:Softcover reprint of the original 2nd ed. 2016
Editura: Springer International Publishing
Colecția Birkhäuser
Seria Progress in Nonlinear Differential Equations and Their Applications
Locul publicării:Cham, Switzerland
Cuprins
Generalized Solutions to Monge-Ampère Equations.- Uniformly Elliptic Equations in Nondivergence Form.- The Cross-sections of Monge-Ampère.- Convex Solutions of detDu=1 in R<i>n.- Regularity Theory for the Monge-Ampère Equation.- W^2,p Estimates for the Monge-Ampère Equation.- The Linearized Monge-Ampère Equation.- Interior Hölder Estimates for Second Derivatives.- References.- Index.
Recenzii
“Very clear monograph that will be useful in stimulating new researches on the Monge-Ampère equation, its connections with several research areas and its applications.” (Vincenzo Vespri, zbMATH 1356.35004, 2017)
Notă biografică
Cristian Gutierrez is a Professor in the Department of Mathematics at Temple University in Philadelphia, PA, USA. He teaches courses in Partial Differential Equations and Analysis.
Textul de pe ultima copertă
Now in its second edition, this monograph explores the Monge-Ampère equation and the latest advances in its study and applications. It provides an essentially self-contained systematic exposition of the theory of weak solutions, including regularity results by L. A. Caffarelli. The geometric aspects of this theory are stressed using techniques from harmonic analysis, such as covering lemmas and set decompositions. An effort is made to present complete proofs of all theorems, and examples and exercises are offered to further illustrate important concepts. Some of the topics considered include generalized solutions, non-divergence equations, cross sections, and convex solutions. New to this edition is a chapter on the linearized Monge-Ampère equation and a chapter on interior Hölder estimates for second derivatives. Bibliographic notes, updated and expanded from the first edition, are included at the end of every chapter for further reading on Monge-Ampère-type equations and their diverse applications in the areas of differential geometry, the calculus of variations, optimization problems, optimal mass transport, and geometric optics. Both researchers and graduate students working on nonlinear differential equations and their applications will find this to be a useful and concise resource.
Caracteristici
Covers the latest advances in the study of the Monge-Ampère equation and its applications Includes new chapters on the Harnack inequality for the linearized Monge-Ampère equation and on interior Hölder estimates for second derivatives Bibliographic notes provided at the end of each chapter for further exploration of topics