Cantitate/Preț
Produs

The Theory of Classical Valuations: Springer Monographs in Mathematics

Autor Paulo Ribenboim
en Limba Engleză Hardback – 21 mai 1999
In his studies of cyclotomic fields, in view of establishing his monumental theorem about Fermat's last theorem, Kummer introduced "local" methods. They are concerned with divisibility of "ideal numbers" of cyclotomic fields by lambda = 1 - psi where psi is a primitive p-th root of 1 (p any odd prime). Henssel developed Kummer's ideas, constructed the field of p-adic numbers and proved the fundamental theorem known today. Kurschak formally introduced the concept of a valuation of a field, as being real valued functions on the set of non-zero elements of the field satisfying certain properties, like the p-adic valuations. Ostrowski, Hasse, Schmidt and others developed this theory and collectively, these topics form the primary focus of this book.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 64643 lei  6-8 săpt.
  Springer – 4 oct 2012 64643 lei  6-8 săpt.
Hardback (1) 65004 lei  6-8 săpt.
  Springer – 21 mai 1999 65004 lei  6-8 săpt.

Din seria Springer Monographs in Mathematics

Preț: 65004 lei

Preț vechi: 76476 lei
-15% Nou

Puncte Express: 975

Preț estimativ în valută:
12441 12954$ 10514£

Carte tipărită la comandă

Livrare economică 10-24 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387985251
ISBN-10: 0387985255
Pagini: 403
Ilustrații: XI, 403 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.69 kg
Ediția:1999
Editura: Springer
Colecția Springer
Seria Springer Monographs in Mathematics

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1 Absolute Values of Fields.- 1.1. First Examples.- 1.2. Generalities About Absolute Values of a Field.- 1.3. Absolute Values of Q.- 1.4. The Independence of Absolute Values.- 1.5. The Topology of Valued Fields.- 1.6. Archimedean Absolute Values.- 1.7. Topological Characterizations of Valued Fields.- 2 Valuations of a Field.- 2.1. Generalities About Valuations of a Field.- 2.2. Complete Valued Fields and Qp.- 3 Polynomials and Henselian Valued Fields.- 3.1. Polynomials over Valued Fields.- 3.2. Henselian Valued Fields.- 4 Extensions of Valuations.- 4.1. Existence of Extensions and General Results.- 4.2. The Set of Extensions of a Valuation.- 5 Uniqueness of Extensions of Valuations and Poly-Complete Fields.- 5.1. Uniqueness of Extensions.- 5.2. Poly-Complete Fields.- 6 Extensions of Valuations: Numerical Relations.- 6.1. Numerical Relations for Valuations with Unique Extension.- 6.2. Numerical Relations in the General Case.- 6.3. Some Interesting Examples.- 6.4. Appendix on p-Groups.- 7 Power Series and the Structure of Complete Valued Fields.- 7.1. Power Series.- 7.2. Structure of Complete Discrete Valued Fields.- 8 Decomposition and Inertia Theory.- 8.1. Decomposition Theory.- 8.2. Inertia Theory.- 9 Ramification Theory.- 9.1. Lower Ramification Theory.- 9.2. Higher Ramification.- 10 Valuation Characterizations of Dedekind Domains.- 10.1. Valuation Properties of the Rings of Algebraic Integers.- 10.2. Characterizations of Dedekind Domains.- 10.3. Characterizations of Valuation Domains.- 11 Galois Groups of Algebraic Extensions of Infinite Degree.- 11.1. Galois Extensions of Infinite Degree.- 11.2. The Abelian Closure of Q.- 12 Ideals, Valuations, and Divisors in Algebraic Extensions of Infinite Degree over Q.- 12.1. Ideals.- 12.2. Valuations, Dedekind Domains, and Examples.- 12.3. Divisors of Algebraic Number Fields of Infinite Degree.- 13 A Glimpse of Krull Valuations.- 13.1. Generalities.- 13.2. Integrally Closed Domains.- 13.3. Suggestions for Further Study.- Appendix Commutative Fields and Characters of Finite Abelian Groups.- A.1. Algebraic Elements.- A.2. Algebraic Elements, Algebraically Closed Fields.- A.3. Algebraic Number Fields.- A.4. Characteristic and Prime Fields.- A.5. Normal Extensions and Splitting Fields.- A.6. Separable Extensions.- A.7. Galois Extensions.- A.8. Roots of Unity.- A.9. Finite Fields.- A.10. Trace and Norm of Elements.- A.11. The Discriminant.- A.12. Discriminant and Resultant of Polynomials.- A.13. Inseparable Extensions.- A.14. Perfect Fields.- A.15. The Theorem of Steinitz.- A.16. Orderable Fields.- A.17. The Theorem of Artin.- A.18. Characters of Finite Abelian Groups.

Recenzii

"It is well written, encyclopedic, and authoritative and probably belongs on the shelf of any commutative algebraist or algebraic number theorist."--MATHEMATICAL REVIEWS

Caracteristici

Area of great interest where there is no book to serve as a first introduction to the topic * Fully up-to-date as the author draws upon his long-standing experience * Ribenboim has written other successful Springer titles * Fills a niche in the literature and will serve as the ultimate resource on the subject