Cantitate/Preț
Produs

Topology: Undergraduate Texts in Mathematics

Autor K. Jänich Traducere de S. Levy
en Limba Engleză Hardback – 30 ian 1984
Contents: Introduction. - Fundamental Concepts. -Topological Vector Spaces.- The Quotient Topology. -Completion of Metric Spaces. - Homotopy. - The TwoCountability Axioms. - CW-Complexes. - Construction ofContinuous Functions on Topological Spaces. - CoveringSpaces. - The Theorem of Tychonoff. - Set Theory (by T.Br|cker). - References. - Table of Symbols. -Index.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 40067 lei  6-8 săpt.
  Springer – 3 oct 2012 40067 lei  6-8 săpt.
Hardback (1) 40754 lei  6-8 săpt.
  Springer – 30 ian 1984 40754 lei  6-8 săpt.

Din seria Undergraduate Texts in Mathematics

Preț: 40754 lei

Nou

Puncte Express: 611

Preț estimativ în valută:
77100 8228$ 64100£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387908922
ISBN-10: 0387908927
Pagini: 193
Ilustrații: IX, 193 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.47 kg
Ediția:1984
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics

Locul publicării:New York, NY, United States

Public țintă

Lower undergraduate

Cuprins

§1. What is point-set topology about?.- §2. Origin and beginnings.- I Fundamental Concepts.- §1. The concept of a topological space.- §2. Metric spaces.- §3. Subspaces, disjoint unions and products.- §4. Bases and subbases.- §5. Continuous maps.- §6. Connectedness.- §7. The Hausdorff separation axiom.- §8. Compactness.- II Topological Vector Spaces.- §1. The notion of a topological vector space.- §2. Finite-dimensional vector spaces.- §3. Hilbert spaces.- §4. Banach spaces.- §5. Fréchet spaces.- §6. Locally convex topological vector spaces.- §7. A couple of examples.- III The Quotient Topology.- §1. The notion of a quotient space.- §2. Quotients and maps.- §3. Properties of quotient spaces.- §4. Examples: Homogeneous spaces.- §5. Examples: Orbit spaces.- §6. Examples: Collapsing a subspace to a point.- §7. Examples: Gluing topological spaces together.- IV Completion of Metric Spaces.- §1. The completion of a metric space.- §2. Completion of a map.- §3. Completion of normed spaces.- V Homotopy.- §1. Homotopic maps.- §2. Homotopy equivalence.- §3. Examples.- §4. Categories.- §5. Functors.- §6. What is algebraic topology?.- §7. Homotopy—what for?.- VI The Two Countability Axioms.- §1. First and second countability axioms.- §2. Infinite products.- §3. The role of the countability axioms.- VII CW-Complexes.- §1. Simplicial complexes.- §2. Cell decompositions.- §3. The notion of a CW-complex.- §4. Subcomplexes.- §5. Cell attaching.- §6. Why CW-complexes are more flexible.- §7. Yes, but… ?.- VIII Construction of Continuous Functions on Topological Spaces.- §1. The Urysohn lemma.- §2. The proof of the Urysohn lemma.- §3. The Tietze extension lemma.- §4. Partitions of unity and vector bundle sections.- §5. Paracompactness.- IX Covering Spaces.- §1. Topological spaces over X.- §2. The concept of a covering space.- §3. Path lifting.- §4. Introduction to the classification of covering spaces.- §5. Fundamental group and lifting behavior.- §6. The classification of covering spaces.- §7. Covering transformations and universal cover.- §8. The role of covering spaces in mathematics.- X The Theorem of Tychonoff.- §1. An unlikely theorem?.- §2. What is it good for?.- §3. The proof.- Last Chapter Set Theory (by Theodor Bröcker).- References.- Table of Symbols.