Cantitate/Preț
Produs

Variational Methods for Structural Optimization: Applied Mathematical Sciences, cartea 140

Autor Andrej Cherkaev
en Limba Engleză Paperback – 24 sep 2012
In recent decades, it has become possible to turn the design process into computer algorithms. By applying different computer oriented methods the topology and shape of structures can be optimized and thus designs systematically improved. These possibilities have stimulated an interest in the mathematical foundations of structural optimization. The challenge of this book is to bridge a gap between a rigorous mathematical approach to variational problems and the practical use of algorithms of structural optimization in engineering applications. The foundations of structural optimization are presented in a sufficiently simple form to make them available for practical use and to allow their critical appraisal for improving and adapting these results to specific models. Special attention is to pay to the description of optimal structures of composites; to deal with this problem, novel mathematical methods of nonconvex calculus of variation are developed. The exposition is accompanied by examples.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 95794 lei  6-8 săpt.
  Springer – 24 sep 2012 95794 lei  6-8 săpt.
Hardback (1) 96235 lei  6-8 săpt.
  Springer – 16 iun 2000 96235 lei  6-8 săpt.

Din seria Applied Mathematical Sciences

Preț: 95794 lei

Preț vechi: 116821 lei
-18% Nou

Puncte Express: 1437

Preț estimativ în valută:
18332 19163$ 15491£

Carte tipărită la comandă

Livrare economică 07-21 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461270386
ISBN-10: 1461270383
Pagini: 580
Ilustrații: XXVI, 548 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.8 kg
Ediția:Softcover reprint of the original 1st ed. 2000
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

I Preliminaries.- 1 Relaxation of One-Dimensional Variational Problems.- 2 Conducting Composites.- 3 Bounds and G-Closures.- II Optimization of Conducting Composites.- 4 Domains of Extremal Conductivity.- 5 Optimal Conducting Structures.- III Quasiconvexity and Relaxation.- 6 Quasiconvexity.- 7 Optimal Structures and Laminates.- 8 Lower Bound: Translation Method.- 9 Necessary Conditions and Minimal Extensions.- IV G-Closures.- 10 Obtaining G-Closures.- 11 Examples of G-Closures.- 12 Multimaterial Composites.- 13 Supplement: Variational Principles for Dissipative Media.- V Optimization of Elastic Structures.- 14 Elasticity of Inhomogeneous Media.- 15 Elastic Composites of Extremal Energy.- 16 Bounds on Effective Properties.- 17 Some Problems of Structural Optimization.- References.- Author/Editor Index.