Adaptive Learning of Polynomial Networks: Genetic Programming, Backpropagation and Bayesian Methods: Genetic and Evolutionary Computation
Autor Nikolay Nikolaev, Hitoshi Ibaen Limba Engleză Paperback – 11 feb 2011
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 988.81 lei 6-8 săpt. | |
Springer Us – 11 feb 2011 | 988.81 lei 6-8 săpt. | |
Hardback (1) | 997.25 lei 6-8 săpt. | |
Springer Us – 3 mai 2006 | 997.25 lei 6-8 săpt. |
Din seria Genetic and Evolutionary Computation
- 20% Preț: 934.69 lei
- 20% Preț: 590.21 lei
- 20% Preț: 997.25 lei
- 20% Preț: 651.42 lei
- 20% Preț: 614.43 lei
- 20% Preț: 650.08 lei
- 20% Preț: 332.24 lei
- 20% Preț: 649.09 lei
- 20% Preț: 995.09 lei
- 20% Preț: 996.40 lei
- 20% Preț: 643.17 lei
- 20% Preț: 331.08 lei
- 20% Preț: 340.32 lei
- 20% Preț: 333.72 lei
- 20% Preț: 651.23 lei
- 20% Preț: 336.02 lei
- 20% Preț: 1050.86 lei
- 20% Preț: 1458.70 lei
- 20% Preț: 983.71 lei
- 20% Preț: 992.44 lei
- 20% Preț: 1048.53 lei
- 20% Preț: 1473.24 lei
- 20% Preț: 939.31 lei
- 20% Preț: 593.54 lei
Preț: 988.81 lei
Preț vechi: 1236.01 lei
-20% Nou
Puncte Express: 1483
Preț estimativ în valută:
189.23€ • 196.83$ • 156.22£
189.23€ • 196.83$ • 156.22£
Carte tipărită la comandă
Livrare economică 14-28 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781441940605
ISBN-10: 144194060X
Pagini: 332
Ilustrații: XIV, 316 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.47 kg
Ediția:Softcover reprint of hardcover 1st ed. 2006
Editura: Springer Us
Colecția Springer
Seria Genetic and Evolutionary Computation
Locul publicării:New York, NY, United States
ISBN-10: 144194060X
Pagini: 332
Ilustrații: XIV, 316 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.47 kg
Ediția:Softcover reprint of hardcover 1st ed. 2006
Editura: Springer Us
Colecția Springer
Seria Genetic and Evolutionary Computation
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Inductive Genetic Programming.- Tree-Like PNN Representations.- Fitness Functions and Landscapes.- Search Navigation.- Backpropagation Techniques.- Temporal Backpropagation.- Bayesian Inference Techniques.- Statistical Model Diagnostics.- Time Series Modelling.- Conclusions.
Recenzii
From the reviews:
"This book describes induction of polynomial neural networks from data. … This book may be used as a textbook for an advanced course on special topics of machine learning." (Jerzy W. Grzymala-Busse, Zentralblatt MATH, Vol. 1119 (21), 2007)
"This book describes induction of polynomial neural networks from data. … This book may be used as a textbook for an advanced course on special topics of machine learning." (Jerzy W. Grzymala-Busse, Zentralblatt MATH, Vol. 1119 (21), 2007)
Caracteristici
Offers a shift in focus from the standard linear models toward highly nonlinear models that can be inferred by contemporary learning approaches Presents alternative probabilistic search algorithms that discover the model architecture and neural network training techniques to find accurate polynomial weights Facilitates the discovery of polynomial models for time-series prediction Includes supplementary material: sn.pub/extras