Cantitate/Preț
Produs

Algebraic K-Theory: Mathematics and Its Applications, cartea 311

Autor Hvedri Inassaridze
en Limba Engleză Hardback – 30 noi 1994
Algebraic K-theory is a modern branch of algebra which has many important applications in fundamental areas of mathematics connected with algebra, topology, algebraic geometry, functional analysis and algebraic number theory. Methods of algebraic K-theory are actively used in algebra and related fields, achieving interesting results.
This book presents the elements of algebraic K-theory, based essentially on the fundamental works of Milnor, Swan, Bass, Quillen, Karoubi, Gersten, Loday and Waldhausen. It includes all principal algebraic K-theories, connections with topological K-theory and cyclic homology, applications to the theory of monoid and polynomial algebras and in the theory of normed algebras.
This volume will be of interest to graduate students and research mathematicians who want to learn more about K-theory.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 92446 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 15 dec 2010 92446 lei  6-8 săpt.
Hardback (1) 93057 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 30 noi 1994 93057 lei  6-8 săpt.

Din seria Mathematics and Its Applications

Preț: 93057 lei

Preț vechi: 113484 lei
-18% Nou

Puncte Express: 1396

Preț estimativ în valută:
17808 18730$ 14834£

Carte tipărită la comandă

Livrare economică 03-17 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792331858
ISBN-10: 0792331850
Pagini: 440
Ilustrații: VIII, 440 p.
Dimensiuni: 156 x 234 x 25 mm
Greutate: 0.81 kg
Ediția:1995
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

I. Classical Algebraic K-functors.- II. Higher K-functors.- III. Properties of algebraic K-functors.- IV. Relations between algebraic K-theories.- V. Relation between algebraic and topological K-theories.- VI. The problem of Serre for polynomial and monoid algebras.- VII. Connection with cyclic homology.- References.