Cantitate/Preț
Produs

Bayesian inference with INLA

Autor Virgilio Gomez-Rubio
en Limba Engleză Hardback – 17 feb 2020
The integrated nested Laplace approximation (INLA) is a recent computational method that can fit Bayesian models in a fraction of the time required by typical Markov chain Monte Carlo (MCMC) methods. INLA focuses on marginal inference on the model parameters of latent Gaussian Markov random fields models and exploits conditional independence properties in the model for computational speed.
Bayesian Inference with INLA provides a description of INLA and its associated R package for model fitting. This book describes the underlying methodology as well as how to fit a wide range of models with R. Topics covered include generalized linear mixed-effects models, multilevel models, spatial and spatio-temporal models, smoothing methods, survival analysis, imputation of missing values, and mixture models. Advanced features of the INLA package and how to extend the number of priors and latent models available in the package are discussed. All examples in the book are fully reproducible and datasets and R code are available from the book website.
This book will be helpful to researchers from different areas with some background in Bayesian inference that want to apply the INLA method in their work. The examples cover topics on biostatistics, econometrics, education, environmental science, epidemiology, public health, and the social sciences.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 43680 lei  43-57 zile
  CRC Press – 30 sep 2021 43680 lei  43-57 zile
Hardback (1) 59578 lei  22-36 zile +3444 lei  5-11 zile
  CRC Press – 17 feb 2020 59578 lei  22-36 zile +3444 lei  5-11 zile

Preț: 59578 lei

Preț vechi: 65471 lei
-9% Nou

Puncte Express: 894

Preț estimativ în valută:
11402 11878$ 9480£

Carte disponibilă

Livrare economică 20 ianuarie-03 februarie 25
Livrare express 03-09 ianuarie 25 pentru 4443 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781138039872
ISBN-10: 113803987X
Pagini: 330
Dimensiuni: 178 x 254 x 27 mm
Greutate: 0.85 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC

Public țintă

Professional Practice & Development

Cuprins

1. Introduction to Bayesian Inference. 2. The Integrated Nested Laplace Approximation. 3. Mixed-effects Models. 4. Multilevel Models. 5. Priors in R-INLA. 6. Advanced Features. 7. Spatial Models. 8. Temporal Models. 9. Smoothing. 10. Survival Models. 11. Implementing New Latent Models. 12. Missing Values and Imputation. 13. Mixture models.

Notă biografică

Virgilio Gómez-Rubio is associate professor in the Department of Mathematics, School of Industrial Engineering, Universidad de Castilla-La Mancha, Albacete, Spain. He has developed several packages on spatial and Bayesian statistics that are available on CRAN, as well as co-authored books on spatial data analysis and INLA including Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA (CRC Press, 2019).

Recenzii

  "I strongly recommend the book `Bayesian inference with INLA and R-INLA’ written by Virgilio Gomez-Rubio for anyone working in analysing data using R-INLA. The book is well-written and focuses not only on variety models with INLA and R-INLA but also on how to extend the usage of R-INLA. It has a nice and well-planned layout. The practical tutorial-style works nicely and it has an excellent set of examples. The author manages to cover a large amount of technical details; therefore the book will be interest to a wide audience such as students, statisticians and applied researchers. The book has all the details for both basic and advanced knowledge on using INLA and R-INLA…The book could serve both as a reference for researchers or textbook for both introductory and advanced class."
~Jingyi Guo Fuglstad, Norwegian University of Science and Technology
"The book is technically correct and clearly written. The level of difficulty is appropriate for practitioners or those interested in knowing the possibilities of R-INLA…It stands as a first read for people interested in using R-INLA to fit latent Gaussian models-based models. It will be more of a reference book. One can learn how to solve a problem by reading one of the examples and then solve a similar problem. One can also get inspired with the idea in an example and do a bit more complex model from this. The tricks explored in some examples may be useful to solve diverse other problems, like the copy feature."
~Gianluca Baio, University College London
"The book under review is well-written, has a clear and logical structure, and provides a comprehensive overview of models that can be fitted with R-INLA. The author consistently provides the R code embedded within the text, which is a crucial feature, especially for those who want to replicate the coding procedure for similar case studies using their own data."
~Andre Python, University of Oxford
"The book adopts a brief style in most of the chapters. In each example, it gives a general idea of the problem and jumps directly to showing how to solve it. The details are not explored in the examples but only what is need for getting the problem solved…Overall the book is like a tutorial with several examples in several different areas of statistical modeling…This book will be a good reference book for introducing INLA in a Bayesian applied course. This will be also useful for researches who intend to apply INLA when modeling with the class of models for which INLA is suitable. It can be the first source of inspiration for those who need to solve a problem similar to one of those considered in the book."
~Elias T. Krainski, Universidade Federal do Para

Descriere

The Integrated Nested Laplace Approximation (INLA) is a popular method for approximate Bayesian inference. This book provides an introduction to the underlying INLA methodology and practical guidance on how to fit different models with R-INLA and R. This covers a wide range of applications, such as multilevel models, spatial models and survival models, The book will also cover recent research on how to extend the types of models that can be fitted with INLA and R-INLA. This will include built-in features in R-INLA to define new latent models directly in R as well as combining INLA with numerical integration and MCMC methods.