Causation, Prediction, and Search: Lecture Notes in Statistics, cartea 81
Autor Peter Spirtes, Clark Glymour, Richard Scheinesen Limba Engleză Paperback – 26 sep 2011
Din seria Lecture Notes in Statistics
- 15% Preț: 627.22 lei
- 17% Preț: 490.19 lei
- 17% Preț: 460.28 lei
- 18% Preț: 938.95 lei
- 18% Preț: 999.93 lei
- 18% Preț: 1222.38 lei
- Preț: 380.53 lei
- 15% Preț: 635.99 lei
- 15% Preț: 654.02 lei
- Preț: 432.96 lei
- 20% Preț: 561.42 lei
- 15% Preț: 634.88 lei
- 15% Preț: 628.87 lei
- 18% Preț: 936.31 lei
- 15% Preț: 636.68 lei
- 18% Preț: 988.63 lei
- 18% Preț: 936.31 lei
- 15% Preț: 638.28 lei
- 18% Preț: 940.19 lei
- 18% Preț: 935.68 lei
- 18% Preț: 880.07 lei
- Preț: 380.32 lei
- 15% Preț: 628.69 lei
- 15% Preț: 630.97 lei
- Preț: 390.85 lei
- 15% Preț: 628.04 lei
- 15% Preț: 632.58 lei
- 15% Preț: 697.70 lei
- 15% Preț: 637.96 lei
- 15% Preț: 639.89 lei
- 15% Preț: 640.40 lei
- Preț: 379.55 lei
- 15% Preț: 631.63 lei
- 15% Preț: 643.15 lei
- Preț: 377.84 lei
- 18% Preț: 880.52 lei
- 15% Preț: 629.65 lei
- 15% Preț: 643.97 lei
- Preț: 376.15 lei
- 15% Preț: 643.80 lei
- 15% Preț: 642.83 lei
- 18% Preț: 774.64 lei
- 15% Preț: 636.50 lei
- 18% Preț: 1094.55 lei
- 15% Preț: 638.42 lei
- Preț: 381.89 lei
- 15% Preț: 635.67 lei
Preț: 787.61 lei
Preț vechi: 960.50 lei
-18% Nou
Puncte Express: 1181
Preț estimativ în valută:
150.84€ • 155.41$ • 126.36£
150.84€ • 155.41$ • 126.36£
Carte tipărită la comandă
Livrare economică 24 februarie-10 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461276500
ISBN-10: 1461276500
Pagini: 556
Ilustrații: XXIV, 530 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.77 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 1461276500
Pagini: 556
Ilustrații: XXIV, 530 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.77 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Introduction and Advertisement.- 1.1 The Issue.- 1.2 Advertisements.- 1.3 Themes.- 2. Formal Preliminaries.- 2.1 Graphs.- 2.2 Probability.- 2.3 Graphs and Probability Distributions.- 2.4 Undirected Independence Graphs.- 2.5 Deterministic and Pseudo-Indeterministic Systems.- 2.6 Background Notes.- 3. Causation and Prediction: Axioms and Explications.- 3.1 Conditionals.- 3.2 Causation.- 3.3 Causality and Probability.- 3.4 The Axioms.- 3.5 Discussion of the Conditions.- 3.6 Bayesian Interpretations.- 3.7 Consequences of The Axioms.- 3.8 Determinism.- 3.9 Background Notes.- 4. Statistical Indistinguishability.- 4.1 Strong Statistical Indistinguishability.- 4.2 Faithful Indistinguishability.- 4.3 Weak Statistical Indistinguishability.- 4.4 Rigid Indistinguishability.- 4.5 The Linear Case.- 4.6 Redefining Variables.- 4.7 Background Notes.- 5. Discovery Algorithms for Causally Sufficient Structures.- 5.1 Discovery Problems.- 5.2 Search Strategies in Statistics.- 5.3 The Wermuth-Lauritzen Algorithm.- 5.4 New Algorithms.- 5.5 Statistical Decisions.- 5.6 Reliability and Probabilities of Error.- 5.7 Estimation.- 5.8 Examples and Applications.- 5.9 Conclusion.- 5.10 Background Notes.- 6. Discovery Algorithms without Causal Sufficiency.- 6.1 Introduction.- 6.2 The PC Algorithm and Latent Variables.- 6.3 Mistakes.- 6.4 Inducing Paths.- 6.5 Inducing Path Graphs.- 6.6 Partially Oriented Inducing Path Graphs.- 6.7 Algorithms for Causal Inference with Latent Common Causes.- 6.8 Theorems on Detectable Causal Influence.- 6.9 Non-Independence Constraints.- 6.10 Generalized Statistical Indistinguishability and Linearity.- 6.11 The Tetrad Representation Theorem.- 6.12 An Example: Math Marks and Causal Interpretation.- 6.13 Background Notes.- 7. Prediction.- 7.1 Introduction.- 7.2 Prediction Problems.- 7.3 Rubin-Holland-Pratt-Schlaifer Theory.- 7.4 Prediction with Causal Sufficiency.- 7.5 Prediction without Causal Sufficiency.- 7.6 Examples.- 7.7 Conclusion.- 7.8 Background Notes.- 8. Regression, Causation and Prediction.- 8.1 When Regression Fails to Measure Influence.- 8.2 A Solution and Its Application.- 8.3 Error Probabilities for Specification Searches.- 8.4 Conclusion.- 9. The Design of Empirical Studies.- 9.1 Observational or Experimental Study?.- 9.2 Selecting Variables.- 9.3 Sampling.- 9.4 Ethical Issues in Experimental Design.- 9.5 An Example: Smoking and Lung Cancer.- 9.6 Appendix.- 10. The Structure of the Unobserved.- 10.1 Introduction.- 10.2 An Outline of the Algorithm.- 10.3 Finding Almost Pure Measurement Models.- 10.4 Facts about the Unobserved Determined by the Observed.- 10.5 Unifying the Pieces.- 10.6 Simulation Tests.- 10.7 Conclusion.- 11. Elaborating Linear Theories with Unmeasured Variables.- 11.1 Introduction.- 11.2 The Procedure.- 11.3 The LISREL and EQS Procedures.- 11.5 Results.- 11.6 Reliability and Informativeness.- 11.7 Using LISREL and EQS as Adjuncts to Search.- 11.8 Limitations of the TETRAD II Elaboration Search.- 11.9 Some Morals for Statistical Search.- 12. Open Problems.- 12.1 Feedback, Reciprocal Causation, and Cyclic Graphs.- 12.2 Indistinguishability Relations.- 12.3 Time series and Granger Causality.- 12.4 Model Specification and Parameter Estimation from the Same Data Base.- 12.5 Conditional Independence Tests.- 13. Proofs of Theorems.- 13.1 Theorem 2.1.- 13.2 Theorem 3.1.- 13.3 Theorem 3.2.- 13.4 Theorem 3.3.- 13.5 Theorem 3.4.- 13.6 Theorem 3.5.- 13.7 Theorem 3.6 (Manipulation Theorem).- 13.8 Theorem 3.7.- 13.9 Theorem 4.1.- 13.10 Theorem 4.2.- 13.11 Theorem 4.3.- 13.12 Theorem 4.4.- 13.13 Theorem 4.5.- 13.14 Theorem 4.6.- 13.15 Theorem 5.1.- 13.16 Theorem 6.1.- 13.17 Theorem 6.2..- 13.18 Theorem 6.3.- 13.19 Theorem 6.4.- 13.20 Theorem 6.5.- 13.21 Theorem 6.6.- 13.22 Theorem 6.7.- 13.23 Theorem 6.8.- 13.24 Theorem 6.9.- 13.25 Theorem 6.10 (Tetrad Representation Theorem).- 13.26 Theorem 6.11.- 13.27 Theorem 7.1.- 13.28 Theorem 7.2.- 13.29 Theorem 7.3.- 13.30 Theorem 7.4.- 13.31 Theorem 7.5.- 13.32 Theorem 9.1.- 13.33 Theorem 9.2.- 13.34 Theorem 10.1.- 13.35 Theorem 10.2.- 13.36 Theorem 11.1.