Dependability for Systems with a Partitioned State Space: Markov and Semi-Markov Theory and Computational Implementation: Lecture Notes in Statistics, cartea 90
Autor Attila Csenkien Limba Engleză Paperback – 28 iul 1994
Din seria Lecture Notes in Statistics
- 15% Preț: 631.86 lei
- 17% Preț: 490.19 lei
- 17% Preț: 460.28 lei
- 18% Preț: 945.92 lei
- 18% Preț: 1007.35 lei
- 18% Preț: 1231.47 lei
- Preț: 383.33 lei
- 15% Preț: 640.71 lei
- 15% Preț: 658.88 lei
- Preț: 436.14 lei
- 20% Preț: 561.42 lei
- 15% Preț: 639.59 lei
- 15% Preț: 633.53 lei
- 18% Preț: 943.25 lei
- 15% Preț: 641.38 lei
- 18% Preț: 995.97 lei
- 18% Preț: 943.25 lei
- 15% Preț: 643.00 lei
- 18% Preț: 947.18 lei
- 18% Preț: 942.63 lei
- 18% Preț: 886.62 lei
- Preț: 383.12 lei
- 15% Preț: 633.35 lei
- 15% Preț: 635.65 lei
- Preț: 393.74 lei
- 15% Preț: 632.70 lei
- 15% Preț: 637.28 lei
- 15% Preț: 702.87 lei
- 15% Preț: 642.68 lei
- 15% Preț: 644.63 lei
- 15% Preț: 645.14 lei
- Preț: 382.36 lei
- 15% Preț: 636.30 lei
- 15% Preț: 647.92 lei
- Preț: 380.63 lei
- 18% Preț: 887.05 lei
- 15% Preț: 634.32 lei
- 15% Preț: 648.74 lei
- Preț: 378.92 lei
- 15% Preț: 648.56 lei
- 15% Preț: 647.59 lei
- 18% Preț: 780.37 lei
- 15% Preț: 641.20 lei
- 18% Preț: 1102.69 lei
- 15% Preț: 643.16 lei
- Preț: 384.70 lei
- 15% Preț: 640.37 lei
Preț: 385.84 lei
Nou
Puncte Express: 579
Preț estimativ în valută:
73.84€ • 76.62$ • 61.72£
73.84€ • 76.62$ • 61.72£
Carte tipărită la comandă
Livrare economică 17-31 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387943336
ISBN-10: 0387943331
Pagini: 244
Ilustrații: IX, 244 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.36 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387943331
Pagini: 244
Ilustrații: IX, 244 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.36 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Stochastic processes for dependability assessment.- 1.1 Markov and semi-Markov processes for dependability assessment.- 1.2 Example systems.- 2 Sojourn times for discrete-parameter Markov chains.- 2.1 Distribution theory for sojourn times and related variables.- 2.2 An application: the sequence of repair events for a three-unit power transmission model.- 3 The number of visits until absorption to subsets of the state space by a discrete-parameter Markov chain: the multivariate case.- 3.1 The probability generating function of M and the probability mass function of L.- 3.2 Further results for n ? {2, 3}.- 3.3 Tabular summary of results in Sections 3.1 and 3.2.- 3.4 A power transmission reliabilty application.- 4 Sojourn times for continuous-parameter Markov chains.- 4.1 Distribution theory for sojourn times.- 4.2 Some further distribution results related to sojourn times.- 4.3 Tabular summary of results in Sections 4.1 and 4.2.- 4.4 An application: further dependability characteristics of the three-unit power transmission model.- 5 The number of visits to a subset of the state space by a continuous-parameter irreducible Markov chain during a finite time interval.- 5.1 The variable $${M_{{A_1}}}(t)$$.- 5.2 An application: the number of repairs of a two-unit power transmission system during a finite time interval.- 6 A compound measure of dependability for continuous-time Markov models of repairable systems.- 6.1 The dependability measure and its evaluation by randomization.- 6.2 The evaluation of ?(k, i, n).- 6.3 Application and computational experience.- 7 A compound measure of dependability for continuous-time absorbing Markov systems.- 7.1 The dependability measure.- 7.2 Proof of Theorem 7.1.- 7.3 Application: the Markov model of the three-unit power transmissionsystem revisited.- 8 Sojourn times for finite semi-Markov processes.- 8.1 A recurrence relation for the Laplace transform of the vector of sojourn times.- 8.2 Laplace transforms of vectors of sojourn times.- 8.3 Proof of Theorem 8.1.- 9 The number of visits to a subset of the state space by an irreducible semi-Markov process during a finite time interval: moment results.- 9.1 Preliminaries on the moments of $${M_{{A_1}}}(t)$$.- 9.2 Main result: the Laplace transform of the measures U?.- 9.3 Proof of Theorem 9.2.- 9.4 Reliability applications.- 10 The number of visits to a subset of the state space by an irreducibe semi-Markov process during a finite time interval: the probability mass function.- 10.1 The Laplace transform of the probability mass function of $${M_{{A_1}}}(t)$$.- 10.2 Numerical inversion of Laplace transforms using Laguerre polynomials and fast Fourier transform.- 10.3 Reliability applications.- 10.4 Implementation issues.- 11 The number of specific service levels of a repairable semi-Markov system during a finite time interval: joint distributions.- 11.1 A recurrence relation for h(t; m1, m2) in the Laplace transform domain.- 11.2 A computation scheme for the Laplace transforms.- 12 Finite time-horizon sojourn times for finite semi-Markov processes.- 12.1 The double Laplace transform of finite-horizon sojourn times.- 12.2 An application: the alternating renewal process.- Postscript.- References.