Discrete-Time Recurrent Neural Control: Analysis and Applications: Automation and Control Engineering
Autor Edgar N. Sanchezen Limba Engleză Paperback – 14 iun 2022
"This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems.
The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market.
It is an excellent book after all."
— Guanrong Chen, City University of Hong Kong
"This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author."
— Alma Y. Alanis, University of Guadalajara, Mexico
"This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones."
— Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 407.93 lei 6-8 săpt. | |
CRC Press – 14 iun 2022 | 407.93 lei 6-8 săpt. | |
Hardback (1) | 1038.33 lei 6-8 săpt. | |
CRC Press – 4 sep 2018 | 1038.33 lei 6-8 săpt. |
Din seria Automation and Control Engineering
- 9% Preț: 270.01 lei
- 32% Preț: 430.99 lei
- 20% Preț: 719.06 lei
- 26% Preț: 1038.33 lei
- 31% Preț: 449.79 lei
- 25% Preț: 834.09 lei
- 23% Preț: 409.29 lei
- 39% Preț: 304.24 lei
- 23% Preț: 368.14 lei
- 26% Preț: 1568.05 lei
- 23% Preț: 367.64 lei
- 39% Preț: 329.98 lei
- 26% Preț: 1043.04 lei
- 26% Preț: 870.52 lei
- 26% Preț: 1035.32 lei
- 23% Preț: 424.64 lei
- 26% Preț: 842.43 lei
- 23% Preț: 350.94 lei
- 13% Preț: 334.87 lei
- 26% Preț: 762.64 lei
- 39% Preț: 329.98 lei
- 31% Preț: 406.02 lei
- 26% Preț: 931.52 lei
- 26% Preț: 823.55 lei
- 23% Preț: 454.02 lei
- 53% Preț: 206.50 lei
- 26% Preț: 926.25 lei
- 26% Preț: 1293.33 lei
- 26% Preț: 1193.46 lei
- 23% Preț: 426.91 lei
- 26% Preț: 1190.24 lei
- 20% Preț: 485.98 lei
- 26% Preț: 1094.71 lei
- 26% Preț: 1045.46 lei
- 26% Preț: 814.23 lei
- 23% Preț: 350.94 lei
- 26% Preț: 594.98 lei
- 25% Preț: 1000.29 lei
- 26% Preț: 928.67 lei
- 31% Preț: 406.02 lei
Preț: 407.93 lei
Preț vechi: 529.81 lei
-23% Nou
Puncte Express: 612
Preț estimativ în valută:
78.07€ • 82.36$ • 65.06£
78.07€ • 82.36$ • 65.06£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781032338965
ISBN-10: 1032338962
Pagini: 292
Dimensiuni: 156 x 234 x 10 mm
Greutate: 0.44 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Automation and Control Engineering
ISBN-10: 1032338962
Pagini: 292
Dimensiuni: 156 x 234 x 10 mm
Greutate: 0.44 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Automation and Control Engineering
Cuprins
Section I Analyses. Introduction. Mathematical Preliminaries. Discrete Time Neural Block Control. Neural Optimal Control. Section II Real-time Applications. Induction motors. Doubly Fed Induction Generator. Conclusions.
Recenzii
"This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems.
The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market.
It is an excellent book after all."
— Guanrong Chen, City University of Hong Kong
"This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author."
— Alma Y. Alanis, University of Guadalajara, Mexico
"This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones."
— Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India
The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market.
It is an excellent book after all."
— Guanrong Chen, City University of Hong Kong
"This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author."
— Alma Y. Alanis, University of Guadalajara, Mexico
"This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones."
— Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India
Descriere
The book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. It provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme.