Cantitate/Preț
Produs

FORTRAN Programming: A Supplement for Calculus Courses: Universitext

Autor W. R. Fuller
en Limba Engleză Paperback – 13 oct 1977

Din seria Universitext

Preț: 31481 lei

Preț vechi: 39352 lei
-20% Nou

Puncte Express: 472

Preț estimativ în valută:
6025 6356$ 5021£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387902838
ISBN-10: 038790283X
Pagini: 148
Ilustrații: XII, 148 p.
Dimensiuni: 170 x 244 x 9 mm
Greutate: 0.27 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: Springer
Colecția Springer
Seria Universitext

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1 A Little Vocabulary.- 2 Fortran Basics.- Arithmetic operations.- Arithmetic hierarchies.- Variable names.- Assignment statements.- Number types, type statements.- Simplified output.- Use of the data card.- 3 Branching statements.- Logical IF, Go to.- Logical connectives.- Stop.- 4 Supplied functions, Arithmetic statement functions.- Supplied functions.- Arithmetic statement functions.- 5 Algorithms and flow charts.- Symbols.- Compute through.- 6 Sequences.- Approximation by sequences, monotonic sequences.- Squeeze theorem.- Recursive definitions.- 7 Output formatting.- Print, format statements.- Specifying number types.- Skip symbol, pX.- Printing headings.- Vertical carriage control.- 8 Roundoff error.- Word length capability.- Accumulated error.- Differencing.- Double Precision.- Double Precision functions.- 9 Potpourri of Fortran statements.- Do, Continue.- Subscripts and dimension.- Read.- Subprograms.- Alphameric constants.- Arithmetic IF.- Computed Go to.- 10 Numerical evaluation of integrals.- Fundamental theorem.- Definition of integral.- Error terms.- 11 Applications to Functions of Two Variables, Infinite Series.- Maxima and Minima.- Gradient method.- Numerical evaluations of double integrals.- Surface Area (Triangularization).- Infinite series.- 12 Differential equations.- Line elements.- Euler’s method.- Runge-Kutta method.- Solutions by power series.- Picard’s method.- Higher order equations and systems.- Solutions to selected exercises.- Computer problems by topics.- Typical course outline.