Cantitate/Preț
Produs

Introduction to the Geometry of Foliations, Part B: Foliations of Codimension One: Aspects of Mathematics, cartea 3

Autor Gilbert Hector
de Limba Germană Paperback – 1983

Din seria Aspects of Mathematics

Preț: 41028 lei

Nou

Puncte Express: 615

Preț estimativ în valută:
7853 8184$ 6537£

Carte tipărită la comandă

Livrare economică 06-20 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783528085681
ISBN-10: 3528085681
Pagini: 312
Ilustrații: X, 298 S.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.44 kg
Ediția:1983
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Aspects of Mathematics

Locul publicării:Wiesbaden, Germany

Public țintă

Research

Cuprins

IV — Basic Constructions and Examples.- 1. General setting in co dimension one.- 2. Topological dynamics.- 3. Foliated bundles; examples.- 4. Gluing foliations together.- 5. Turbulization.- 6. Codimension-one foliations on spheres.- V — Structure of Codimension-One Foliations.- 1. Transverse orientability.- 2. Holonomy of compact leaves.- 3. Saturated open sets of compact manifolds.- 4. Centre of a compact foliated manifold; global stability.- VI — Exceptional Minimal Sets of Compact Foliated Manifolds; A Theorem of Sacksteder.- 1. Resilient leaves.- 2. The theorem of Denjoy-Sacksteder.- 3. Sacksteder’s theorem.- 4. The theorem of Schwartz.- VII — One Sided Holonomy; Vanishing Cycles and Closed Transversals.- 1. Preliminaries on one-sided holonomy and vanishing cycles.- 2. Transverse foliation* of D2 × IR.- 3. Existence of one-sided holonomy and vanishing cycles.- VIII — Foliations without Holonomy.- 1. Closed 1-forms without singularities.- 2. Foliations without holonomy versus equivariant fibrations.- 3. Holonomy representation and cohomology direction.- IX — Growth.- 1. Growth of groups, homogeneous spaces and riemannian manifolds.- 2. Growth of leave in foliatoons on compact manifolds.- X — Holonomy Invariant Measures.- 1. Invariant measures for subgroups of Homeo (?) or Homeo(S1).- 2. Foliations with holonomy invariant measure.