Cantitate/Preț
Produs

The Riemann-Hilbert Problem: A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev: Aspects of Mathematics, cartea 22

Autor D. V. Anosov, A. A. Bolibruch
en Limba Engleză Paperback – 23 aug 2014
This book is devoted to Hilbert's 21st problem (the Riemann-Hilbert problem) which belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concems the existence of a Fuchsian system with prescribed singularities and monodromy. Hilbert was convinced that such a system always exists. However, this tumed out to be a rare case of a wrong forecast made by hirn. In 1989 the second author (A.B.) discovered a counterexample, thus 1 obtaining a negative solution to Hilbert's 21st problem. After we recognized that some "data" (singularities and monodromy) can be obtai­ ned from a Fuchsian system and some others cannot, we are enforced to change our point of view. To make the terminology more precise, we shaII caII the foIIowing problem the Riemann-Hilbert problem for such and such data: does there exist a Fuchsian system having these singularities and monodromy? The contemporary version of the 21 st Hilbert problem is to find conditions implying a positive or negative solution to the Riemann-Hilbert problem.
Citește tot Restrânge

Din seria Aspects of Mathematics

Preț: 58688 lei

Preț vechi: 69045 lei
-15% Nou

Puncte Express: 880

Preț estimativ în valută:
11232 11695$ 9492£

Carte tipărită la comandă

Livrare economică 08-22 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783322929112
ISBN-10: 3322929116
Pagini: 193
Ilustrații: IX, 193 p. 1 illus.
Dimensiuni: 210 x 297 x 15 mm
Greutate: 0.5 kg
Ediția:1994
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Aspects of Mathematics

Locul publicării:Wiesbaden, Germany

Public țintă

Research

Cuprins

1 Introduction.- 2 Counterexample to Hilbert’s 21st problem.- 3 The Plemelj theorem.- 4 Irreducible representations.- 5 Miscellaneous topics.- 6 The case p = 3.- 7 Fuchsian equations.

Notă biografică

Prof. Anosov und Prof. Bolibrukh sind beide am Steklov Institut in Moskau tätig.