Singular Nonlinear Partial Differential Equations: Aspects of Mathematics, cartea 28
Autor Raymond Gérard, Hidetoshi Taharaen Limba Engleză Paperback – 16 dec 2011
Din seria Aspects of Mathematics
- 18% Preț: 770.91 lei
- Preț: 381.27 lei
- 15% Preț: 632.51 lei
- Preț: 413.91 lei
- Preț: 483.58 lei
- 15% Preț: 626.86 lei
- Preț: 444.45 lei
- 18% Preț: 766.56 lei
- 18% Preț: 877.97 lei
- 15% Preț: 462.98 lei
- Preț: 380.34 lei
- Preț: 469.88 lei
- Preț: 371.73 lei
- Preț: 354.21 lei
- Preț: 377.51 lei
- 15% Preț: 577.01 lei
- 15% Preț: 457.01 lei
- Preț: 380.13 lei
- Preț: 329.66 lei
- Preț: 388.27 lei
- Preț: 386.95 lei
- Preț: 415.23 lei
- 18% Preț: 778.84 lei
- 15% Preț: 495.38 lei
- Preț: 378.64 lei
- Preț: 389.24 lei
- 15% Preț: 692.50 lei
- 15% Preț: 467.30 lei
- 24% Preț: 791.47 lei
- Preț: 411.82 lei
- Preț: 376.93 lei
- Preț: 346.36 lei
- Preț: 376.34 lei
- 20% Preț: 350.76 lei
- Preț: 475.98 lei
- Preț: 476.93 lei
- 20% Preț: 348.79 lei
- 15% Preț: 460.07 lei
- 15% Preț: 459.93 lei
- Preț: 449.38 lei
- Preț: 412.78 lei
- Preț: 414.11 lei
Preț: 628.95 lei
Preț vechi: 739.95 lei
-15% Nou
Puncte Express: 943
Preț estimativ în valută:
120.41€ • 125.16$ • 99.83£
120.41€ • 125.16$ • 99.83£
Carte tipărită la comandă
Livrare economică 07-21 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783322802866
ISBN-10: 3322802868
Pagini: 284
Ilustrații: VIII, 272 p.
Dimensiuni: 160 x 240 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Aspects of Mathematics
Locul publicării:Wiesbaden, Germany
ISBN-10: 3322802868
Pagini: 284
Ilustrații: VIII, 272 p.
Dimensiuni: 160 x 240 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Aspects of Mathematics
Locul publicării:Wiesbaden, Germany
Public țintă
Upper undergraduateCuprins
1 Operators with regular singularities: One variable case.- 1.1 Notations, definitions, examples.- 1.2 The good operators.- 1.3 A class of operators with a regular singularity.- 1.4 Applications to differential equations.- 1.5 The Maillet theorem.- 2 Operators with regular singularities: Several variables case.- A Formal theory.- 2.1 Notations.- 2.2 Linear operators on ?[[x]].- 2.3 Non linear operators on ? f.- 2.4 Solutions of linear equations.- 2.5 Solutions of non linear equations.- B Analytic theory.- 2.6 Notations and definitions.- 2.7 The good operators and the notion of domination.- 2.8 A class of operators having a regular singularity.- 2.9 Applications to partial differential equations.- 3 Formal and convergent solutions of singular partial differential equations.- 3.1 Notations and definitions.- 3.2 Holomorphic solutions of certain equations.- 3.3 Equations with parameters.- 3.4 An application: A theorem of S. Kaplan.- 3.5 The case of small denominators.- 4 Local study of differential equations of the form xy? = f(x,y) near x = 0.- 4.1 Coupling of two differential equations.- 4.2 Behavior of solutions of a differential equation near a regular point.- 4.3 Local study of a differential equation near a singular point of regular type.- 4.4 Study of the Hukuhara equation and of the Hukuhara function.- 5 Holomorphic and singular solutions of non linear singular first order partial differential equations.- 5.1 Notations and definitions.- 5.2 Statement of the main theorem.- 5.3 Holomorphic solutions.- 5.4 Singular solutions.- 5.5 Uniqueness of the solution.- 5.6 Proof of the main theorem 5.2.3.- 5.7 Remarks.- 5.8 Supplementary result.- 6 Maillet ’s type theorems for non linear singular partial differential equations.- 6.1 Implicit function theorem.- 6.2 Nonlinear equations with first order linear part.- 6.3 Non linear equations with higher order linear part.- 6.4 Formal Gevrey index for a particular type of equations — Examples.- 6.5 Supplementary results.- 7 Maillet’s type theorems for non linear singular partial differential equations without linear part.- 7.1 Notations and definitions.- 7.2 Assumptions and results.- 7.3 A basic lemma.- 7.4 Proof of theorem 7.2.5.- 7.5 Complementary results.- 7.6 A remark.- 8 Holomorphic and singular solutions of non linear singular partial differential equations.- 8.1 Holomorphic solutions.- 8.2 Singular solutions: Special case.- 8.3 Singular solutions: General case.- 8.4 Asymptotic study.- 8.5 Completion of the proof of the main theorem.- 9 On the existence of holomorphic solutions of the Cauchy problem for non linear partial differential equations.- 9.1 Notations and definitions.- 9.2 Results.- 9.3 Proof of theorem 9.2.1.- 9.4 Proof of theorem 9.2.3.- 10 Maillet’s type theorems for non linear singular integro—differential equations.- 10.1 Notations and definitions.- 10.2 The main theorem.- 10.3 Construction of the formal solution.- 10.4 Some discussions.- 10.5 Convergence of the formal solution in the case sl = 1.- 10.6 Convergence of the formal solution in the case sl > 1.- 10.7 Supplementary results and remark.
Notă biografică
Prof. Raymond Gerard ist am Institut de Recherche Mathématique Alsacien an der Université Louis Pasteur in Strasbourg beschäftigt. Prof. Hidetoshi Tahara lehrt an der Sophia Universität in Tokyo.