Cantitate/Preț
Produs

Rational Points: Seminar Bonn/Wuppertal 1983/84: Aspects of Mathematics, cartea 6

Autor Gerd Faltings, Gisbert Wüstholz
en Limba Engleză Paperback – 20 noi 2013

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 37173 lei  38-44 zile
  Vieweg+Teubner Verlag – 20 noi 2013 37173 lei  38-44 zile
  Vieweg+Teubner Verlag – 1986 38168 lei  43-57 zile

Din seria Aspects of Mathematics

Preț: 37173 lei

Nou

Puncte Express: 558

Preț estimativ în valută:
7114 7390$ 5909£

Carte tipărită la comandă

Livrare economică 29 ianuarie-04 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783322803429
ISBN-10: 3322803422
Pagini: 311
Ilustrații: XI, 312 p.
Dimensiuni: 162 x 229 x 20 mm
Ediția:3rd ed. 1992. Softcover reprint of the original 3rd ed. 1992
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Aspects of Mathematics

Locul publicării:Wiesbaden, Germany

Public țintă

Professional/practitioner

Cuprins

I: Moduli Spaces.- § 1 Introduction.- § 2 Generalities about moduli spaces.- § 3 Examples.- § 4 Metrics with logarithmic singularities.- § 5 The minimal compactification of Ag/?.- § 8 The toroidal compactification.- II: Heights.- § 1 The definition.- § 2 Néron-Tate heights.- § 3 Heights on the moduli space.- § 4 Applications.- III: Some Facts from the Theory of Group Schemes.- § 0 Introduction.- § 1 Generalities on group schemes.- § 2 Finite group schemes.- § 3 p-divisible groups.- § 4 A theorem of Raynaud.- § 5 A theorem of Tate.- IV: Tate’s Conjecture on the Endomorphisms of Abelian Varieties.- § 1 Statements.- § 2 Reductions.- § 3 Heights.- § 4 Variants.- V: The Finiteness Theorems of Faltings.- § 1 Introduction.- § 2 The finiteness theorem for isogeny classes.- § 3 The finiteness theorem for isomorphism classes.- § 4 Proof of Mordell’s conjecture.- § 5 Siegel’s Theorem on integer points.- VI: Complements to Mordell.- § 1 Introduction.- § 2 Preliminaries.- § 3 The Tate conjecture.-§ 4 The Shafarevich conjecture.- § 5 Endomorphisms.- § 6 Effectivity.- VII: Intersection Theory on Arithmetic Surfaces.- § 0 Introduction.- § 1 Hermitian line bundles.- § 2 Arakelov divisors and intersection theory.- § 3 Volume forms on IR?(X, ?).- § 4 Riemann Roch.- § 5 The Hodge index theorem.- Appendix: New Developments in Diophantine and Arithmetic Algebraic Geometry (Gisbert Wüstholz).- § 2 The transcendental approach.- § 3 Vojta’s approach.- § 4 Arithmetic Riemann-Roch Theorem.- § 5 Applications in Arithmetic.- § 6 Small sections.- § 7 Vojta’s proof in the number field case.- § 8 Lang’s conjecture.- § 9 Proof of Faltings’ theorem.- § 10 An elementary proof of Mordell’s conjecture.- § 11 ?-adic representations attached to abelian varieties.