Cantitate/Preț
Produs

The Cauchy-Riemann Complex: Integral Formulae and Neumann Problem: Aspects of Mathematics, cartea 34

Autor Ingo Lieb, Joachim Michel
en Limba Engleză Paperback – 27 iul 2012
This book presents complex analysis of several variables from the point of view of the Cauchy-Riemann equations and integral representations. A more detailed description of our methods and main results can be found in the introduction. Here we only make some remarks on our aims and on the required background knowledge. Integral representation methods serve a twofold purpose: 1° they yield regularity results not easily obtained by other methods and 2°, along the way, they lead to a fairly simple development of parts of the classical theory of several complex variables. We try to reach both aims. Thus, the first three to four chapters, if complemented by an elementary chapter on holomorphic functions, can be used by a lecturer as an introductory course to com­ plex analysis. They contain standard applications of the Bochner-Martinelli-Koppelman integral representation, a complete presentation of Cauchy-Fantappie forms giving also the numerical constants of the theory, and a direct study of the Cauchy-Riemann com­ plex on strictly pseudoconvex domains leading, among other things, to a rather elementary solution of Levi's problem in complex number space en. Chapter IV carries the theory from domains in en to strictly pseudoconvex subdomains of arbitrary - not necessarily Stein - manifolds. We develop this theory taking as a model classical Hodge theory on compact Riemannian manifolds; the relation between a parametrix for the real Laplacian and the generalised Bochner-Martinelli-Koppelman formula is crucial for the success of the method.
Citește tot Restrânge

Din seria Aspects of Mathematics

Preț: 38924 lei

Nou

Puncte Express: 584

Preț estimativ în valută:
7452 7746$ 6178£

Carte tipărită la comandă

Livrare economică 07-21 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783322916105
ISBN-10: 3322916103
Pagini: 376
Ilustrații: X, 362 p.
Dimensiuni: 170 x 244 x 22 mm
Greutate: 0.6 kg
Ediția:Softcover reprint of the original 1st ed. 2002
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Aspects of Mathematics

Locul publicării:Wiesbaden, Germany

Public țintă

Upper undergraduate

Cuprins

I The Bochner-Martinelli-Koppelman Formula.- §1 Forms on Product Manifolds.- §2 The Complex Laplacian.- §3 The Fundamental Solution.- §4 The Bochner-Martinelli-Koppelman Formula.- §5 Types of Kernels and Regularity Properties.- §6 Derivatives of the BMK Transform.- §7 Applications of the BMK Formula.- §8 Cauchy-Riemann Functions.- §9 The Bochner-Martinelli Transform for Currents.- §10 Regularity Properties of Isotropic Operators.- §11 Notes.- II Cauchy-Fantappiè Forms.- §1 The Koppelman Formula.- §2 A Generalisation of the Bochner-Martinelli-Koppelman Formula.- §3 Notes.- III Strictly Pseudoconvex Domains in ?n.- §1 Strict Pseudoconvexity.- §2 The Levi Polynomial and Holomorphic Support Functions.- §3 The Basic Homotopy Formula for the Ball.- §4 The Basic Integral Representation.- §5 Admissible Kernels and Lp-Estimates.- §6 Levi’s Problem and Vanishing of Cohomology.- §7 The Henkin-Ramírez Formula.- §8 Convex Domains of Finite Type.- §9 Notes.- IV Strictly Pseudoconvex Manifolds.- §1 The Real Laplacian.- §2 Generalised Isotropic Operators.- §3 The Parametrix.- §4 Harmonic Forms and Finiteness Theorems on Compact Manifolds.- §5 Basic Integral Representation on Hermitian Manifolds.- §6 The Levi Problem on Strictly Pseudoconvex Manifolds.- §7 Vanishing of Dolbeault Cohomology Groups.- §8 Notes.- V The a-Neumann Problem.- §1 Operators on Hilbert Spaces.- §2 Hilbert Spaces of Differential Forms.- §3 The Generalised Cauchy Condition.- §4 The Friedrichs-Hörmander Lemma.- §5 The Self-adjointness of the Complex Laplacian and Hörmander’s Density Theorem.- §6 The $$ \overline \partial $$-Neumann Problem.- §7 Notes.- VI Integral Representations for the $$ \overline \partial $$-Neumann Problem.- §1 The Basic IntegralRepresentation.- §2 Cancellation of Singularities.- §3 The Bergman Projection.- §4 Z-operators.- §5 The Structure of the Kernels Tq.- §6 Asymptotic Development of the Neumann Operator.- §7 Notes.- VII Regularity Properties of Admissible Operators.- §1 Spaces of Functions and Differential Forms.- §2 Behaviour of Ao-operators on Lp-spaces.- §3 Regularity Properties of A1-operators.- §4 Regularity Properties of E1?2n-operators.- §5 Notes.- VIII Regularity of the $$ \overline \partial $$-Neumann Problem and Applications.- §1 The Basic Hölder Estimate.- §2 The Basic Sobolev Estimate.- §3 The Basic Ck-Estimate.- §4 Dolbeault Cohomology Spaces.- §5 Regularity of the Bergman Projection.- §6 The L1-theory of the $$ \overline \partial $$-Neumann Problem.- §7 Gleason’s Problem for Ck-functions.- §8 Stability of Estimates for the $$ \overline \partial $$-Neumann Problem.- §9 Mergelyan’s Approximation Theorem with Ck Boundary Values on Hermitian Manifolds.- §10 Notes.- Notations.

Notă biografică

Prof. Dr. Ingo Lieb ist Professor für Mathematik an der Universität Bonn. Er ist Autor der beiden Bücher "Funktionentheorie" und "Ausgewählte Kapitel aus der Funktionentheorie" in der Reihe vieweg studium/Aufbaukurs Mathematik.
Prof. Dr. Joachim Michel ist Professor für Mathematik am "Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville" (L.M.P.A.) in Calais, Frankreich.

Textul de pe ultima copertă

The method of integral representations is developed in order to establish 1. classical fundamental results of complex analysis both elementary and advanced, 2. subtle existence and regularity theorems for the Cauchy-Riemann equations on complex manifolds. These results are then applied to important function theoretic questions. The book can be used for advanced courses and seminars at the graduate level; it contains to a large extent material which has not yet been covered in text books.

Caracteristici

Advanced Methods of Complex Analysis Applied to Classical and New Problems