Cantitate/Preț
Produs

Value Distribution Theory of the Gauss Map of Minimal Surfaces in Rm: Aspects of Mathematics, cartea 21

Autor Hirotaka Fujimoto
en Limba Engleză Paperback – 20 noi 2013

Din seria Aspects of Mathematics

Preț: 37300 lei

Nou

Puncte Express: 560

Preț estimativ în valută:
7139 7441$ 5943£

Carte tipărită la comandă

Livrare economică 06-20 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783322802736
ISBN-10: 3322802736
Pagini: 208
Ilustrații: XIII, 208 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.32 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Aspects of Mathematics

Locul publicării:Wiesbaden, Germany

Public țintă

Upper undergraduate

Cuprins

1 The Gauss map of minimal surfaces in R3.- §1.1 Minimal surfaces in Rm.- §1.2 The Gauss map of minimal surfaces in Bm.- §1.3 Enneper-Weierstrass representations of minimal surfaces in R3.- §1.4 Sum to product estimates for meromorphic functions.- §1.5 The big Picard theorem.- §1.6 An estimate for the Gaussian curvature of minimal surfaces.- 2 The derived curves of a holomorphic curve.- §2.1 Holomorphic curves and their derived curves.- §2.2 Frenet frames.- §2.3 Contact functions.- §2.4 Nochka weights for hyperplanes in subgeneral position.- §2.5 Sum to product estimates for holomorphic curves.- §2.6 Contracted curves.- 3 The classical defect relations for holomorphic curves.- §3.1 The first main theorem for holomorphic curves.- §3.2 The second main theorem for holomorphic curves.- §3.3 Defect relations for holomorphic curves.- §3.4 Borel’s theorem and its applications.- §3.5 Some properties of Wronskians.- §3.6 The second main theorem for derived curves.- 4 Modified defect relation for holomorphic curves.- §4.1 Some properties of currents on a Riemann surface.- §4.2 Metrics with negative curvature.- §4.3 Modified defect relation for holomorphic curves.- §4.4 The proof of the modified defect relation.- 5 The Gauss map of complete minimal surfaces in Rm.- §5.1 Complete minimal surfaces of finite total curvature.- §5.2 The Gauss maps of minimal surfaces of finite curvature.- §5.3 Modified defect relations for the Gauss map of minimal surfaces.- §5.4 The Gauss map of complete minimal surfaces in R3 and R4.- §5.5 Examples.

Notă biografică

Hirotaka Fujimoto ist Professor am Institut für Mathematik der Kanazawa Universität in Japan.