Minimax Theory of Image Reconstruction: Lecture Notes in Statistics, cartea 82
Autor A. P. Korostelev, A. B. Tsybakoven Limba Engleză Paperback – 16 apr 1993
Din seria Lecture Notes in Statistics
- 15% Preț: 621.23 lei
- 17% Preț: 490.19 lei
- 17% Preț: 460.28 lei
- 18% Preț: 929.97 lei
- 18% Preț: 990.34 lei
- 18% Preț: 1210.68 lei
- Preț: 376.93 lei
- 15% Preț: 629.92 lei
- 15% Preț: 647.79 lei
- Preț: 428.83 lei
- 20% Preț: 561.42 lei
- 15% Preț: 628.82 lei
- 15% Preț: 622.86 lei
- 18% Preț: 927.34 lei
- 15% Preț: 630.60 lei
- 18% Preț: 979.16 lei
- 18% Preț: 927.34 lei
- 15% Preț: 632.17 lei
- 18% Preț: 931.20 lei
- 18% Preț: 926.72 lei
- 18% Preț: 871.65 lei
- Preț: 376.71 lei
- 15% Preț: 622.68 lei
- 15% Preț: 624.95 lei
- Preț: 387.15 lei
- 15% Preț: 622.04 lei
- 15% Preț: 626.55 lei
- 15% Preț: 691.04 lei
- 15% Preț: 631.86 lei
- 15% Preț: 633.78 lei
- 15% Preț: 634.28 lei
- Preț: 375.96 lei
- 15% Preț: 625.60 lei
- 15% Preț: 637.00 lei
- Preț: 374.25 lei
- 18% Preț: 872.09 lei
- 15% Preț: 623.65 lei
- 15% Preț: 637.81 lei
- Preț: 372.58 lei
- 15% Preț: 637.63 lei
- 15% Preț: 636.69 lei
- 18% Preț: 767.22 lei
- 15% Preț: 630.41 lei
- 18% Preț: 1084.07 lei
- 15% Preț: 632.33 lei
- Preț: 378.25 lei
- 15% Preț: 629.60 lei
Preț: 628.65 lei
Preț vechi: 739.58 lei
-15% Nou
Puncte Express: 943
Preț estimativ în valută:
120.35€ • 123.77$ • 99.84£
120.35€ • 123.77$ • 99.84£
Carte tipărită la comandă
Livrare economică 19 februarie-05 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387940281
ISBN-10: 0387940286
Pagini: 258
Ilustrații: XII, 258 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387940286
Pagini: 258
Ilustrații: XII, 258 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Nonparametric Regression and Change-Point Problems.- 1.1. Introduction.- 1.2. The nonparametric regression problem.- 1.3. Kernel estimators.- 1.4. Locally-polynomial estimators.- 1.5. Piecewise-polynomial estimators.- 1.6. Bias and variance of the estimators.- 1.7. Criteria for comparing the nonparametric estimators.- 1.8. Rates of the uniform and L1- convergence.- 1.9. The change-point problem.- 2. Minimax Lower Bounds.- 2.1. General statistical model and minimax rates of convergence.- 2.2. The basic idea.- 2.3. Distances between distributions.- 2.4. Examples.- 2.5. The main theorem on lower bounds.- 2.6. Assouad’s lemma.- 2.7. Examples: uniform and integral metrics.- 2.8. Arbitrary design.- 3. The Problem of Edge and Image Estimation.- 3.1. Introduction.- 3.2. Assumptions and notation.- 3.3. Lower bounds on the accuracy of estimates.- 4. Optimal Image and Edge Estimation for Boundary Fragments.- 4.1. Optimal edge estimation.- 4.2. Preliminary lemmas.- 4.3. Proof of Theorem 4.1.1.- 4.4. Optimal image estimation.- 4.5. Proof of Theorem 4.4.5.- 5. Generalizations and Extensions.- 5.1. High-dimensional boundary fragments. Non-Gaussian noise.- 5.2. General domains in high dimensions: a simple and rough estimator.- 5.3. Optimal estimators for general domains in two dimensions.- 5.4. Dudley’s classes of domains.- 5.5. Maximum likelihood estimation on ?-net.- 5.6. Optimal edge estimators for Dudley’s classes.- 5.7. On calculation of optimal edge estimators for general domains.- 6. Image Reconstruction Under Restrictions on Estimates.- 6.1. Naïve linewise processing.- 6.2. Modified linewise procedure.- 6.3. Proofs.- 6.4. Linear image estimators.- 7. Estimation of Support of a Density.- 7.1. Problem statement.- 7.2. A simple and rough support estimator.- 7.3. Minimaxlower bounds for support estimation.- 7.4. Optimal support estimation for boundary fragments.- 7.5. Optimal support estimation for convex domains and for Dudley’s classes.- 8. Estimation of The Domain’s Area.- 8.1. Preliminary discussion.- 8.2. Domain’s area estimation in continuous parametric models.- 8.3. Theorem on the lower bound.- 8.4. Optimal estimator for the domain’s area.- 8.5. Generalizations and extensions.- 8.6. Functionals of support of a density.- 9. Image Estimation from Indirect Observations.- 9.1. The blurred image model.- 9.2. High-dimensional blurred image models.- 9.3. Upper bounds in non-regular case.- 9.4. The stochastic problem of tomography.- 9.5. Minimax rates of convergence.- References.- Author Index.