Minimax Theory of Image Reconstruction: Lecture Notes in Statistics, cartea 82
Autor A. P. Korostelev, A. B. Tsybakoven Limba Engleză Paperback – 16 apr 1993
Din seria Lecture Notes in Statistics
- 17% Preț: 490.18 lei
- 20% Preț: 561.41 lei
- 15% Preț: 621.27 lei
- 15% Preț: 622.36 lei
- 18% Preț: 918.78 lei
- 18% Preț: 1196.10 lei
- 18% Preț: 916.18 lei
- 13% Preț: 310.65 lei
- 18% Preț: 916.18 lei
- 15% Preț: 640.02 lei
- 18% Preț: 978.42 lei
- 18% Preț: 915.58 lei
- 18% Preț: 920.00 lei
- 18% Preț: 967.38 lei
- 15% Preț: 615.38 lei
- 15% Preț: 623.02 lei
- 15% Preț: 624.59 lei
- Preț: 372.44 lei
- 18% Preț: 861.17 lei
- Preț: 372.23 lei
- 15% Preț: 615.21 lei
- 15% Preț: 617.46 lei
- Preț: 382.53 lei
- 15% Preț: 614.59 lei
- 15% Preț: 619.03 lei
- 15% Preț: 682.74 lei
- 15% Preț: 624.28 lei
- 15% Preț: 626.18 lei
- 15% Preț: 626.67 lei
- Preț: 371.49 lei
- 15% Preț: 618.08 lei
- 15% Preț: 629.36 lei
- Preț: 369.80 lei
- 18% Preț: 861.60 lei
- 15% Preț: 616.15 lei
- 15% Preț: 630.17 lei
- Preț: 368.15 lei
- 15% Preț: 629.99 lei
- 15% Preț: 629.04 lei
- 18% Preț: 758.00 lei
- 15% Preț: 622.84 lei
- 18% Preț: 1071.02 lei
- 15% Preț: 624.74 lei
- Preț: 373.76 lei
- 15% Preț: 622.04 lei
- 15% Preț: 631.74 lei
- 15% Preț: 627.93 lei
Preț: 621.10 lei
Preț vechi: 730.70 lei
-15% Nou
Puncte Express: 932
Preț estimativ în valută:
118.88€ • 123.90$ • 98.96£
118.88€ • 123.90$ • 98.96£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387940281
ISBN-10: 0387940286
Pagini: 258
Ilustrații: XII, 258 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387940286
Pagini: 258
Ilustrații: XII, 258 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Nonparametric Regression and Change-Point Problems.- 1.1. Introduction.- 1.2. The nonparametric regression problem.- 1.3. Kernel estimators.- 1.4. Locally-polynomial estimators.- 1.5. Piecewise-polynomial estimators.- 1.6. Bias and variance of the estimators.- 1.7. Criteria for comparing the nonparametric estimators.- 1.8. Rates of the uniform and L1- convergence.- 1.9. The change-point problem.- 2. Minimax Lower Bounds.- 2.1. General statistical model and minimax rates of convergence.- 2.2. The basic idea.- 2.3. Distances between distributions.- 2.4. Examples.- 2.5. The main theorem on lower bounds.- 2.6. Assouad’s lemma.- 2.7. Examples: uniform and integral metrics.- 2.8. Arbitrary design.- 3. The Problem of Edge and Image Estimation.- 3.1. Introduction.- 3.2. Assumptions and notation.- 3.3. Lower bounds on the accuracy of estimates.- 4. Optimal Image and Edge Estimation for Boundary Fragments.- 4.1. Optimal edge estimation.- 4.2. Preliminary lemmas.- 4.3. Proof of Theorem 4.1.1.- 4.4. Optimal image estimation.- 4.5. Proof of Theorem 4.4.5.- 5. Generalizations and Extensions.- 5.1. High-dimensional boundary fragments. Non-Gaussian noise.- 5.2. General domains in high dimensions: a simple and rough estimator.- 5.3. Optimal estimators for general domains in two dimensions.- 5.4. Dudley’s classes of domains.- 5.5. Maximum likelihood estimation on ?-net.- 5.6. Optimal edge estimators for Dudley’s classes.- 5.7. On calculation of optimal edge estimators for general domains.- 6. Image Reconstruction Under Restrictions on Estimates.- 6.1. Naïve linewise processing.- 6.2. Modified linewise procedure.- 6.3. Proofs.- 6.4. Linear image estimators.- 7. Estimation of Support of a Density.- 7.1. Problem statement.- 7.2. A simple and rough support estimator.- 7.3. Minimaxlower bounds for support estimation.- 7.4. Optimal support estimation for boundary fragments.- 7.5. Optimal support estimation for convex domains and for Dudley’s classes.- 8. Estimation of The Domain’s Area.- 8.1. Preliminary discussion.- 8.2. Domain’s area estimation in continuous parametric models.- 8.3. Theorem on the lower bound.- 8.4. Optimal estimator for the domain’s area.- 8.5. Generalizations and extensions.- 8.6. Functionals of support of a density.- 9. Image Estimation from Indirect Observations.- 9.1. The blurred image model.- 9.2. High-dimensional blurred image models.- 9.3. Upper bounds in non-regular case.- 9.4. The stochastic problem of tomography.- 9.5. Minimax rates of convergence.- References.- Author Index.