Nonlinear Oscillations and Waves in Dynamical Systems: Mathematics and Its Applications, cartea 360
Autor P.S Landaen Limba Engleză Hardback – 29 feb 1996
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 653.46 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 7 dec 2010 | 653.46 lei 6-8 săpt. | |
Hardback (1) | 660.04 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 29 feb 1996 | 660.04 lei 6-8 săpt. |
Din seria Mathematics and Its Applications
- 18% Preț: 945.62 lei
- 15% Preț: 648.42 lei
- 15% Preț: 651.99 lei
- 15% Preț: 591.61 lei
- Preț: 394.29 lei
- 18% Preț: 955.56 lei
- 15% Preț: 586.85 lei
- 5% Preț: 655.17 lei
- 15% Preț: 658.70 lei
- 15% Preț: 648.56 lei
- 15% Preț: 604.84 lei
- Preț: 394.87 lei
- 15% Preț: 651.84 lei
- Preț: 374.76 lei
- Preț: 394.51 lei
- 15% Preț: 706.30 lei
- Preț: 391.02 lei
- Preț: 389.70 lei
- 15% Preț: 585.04 lei
- 15% Preț: 653.98 lei
- 15% Preț: 587.02 lei
- 20% Preț: 577.42 lei
- Preț: 395.47 lei
- 15% Preț: 601.88 lei
- 15% Preț: 594.53 lei
- 15% Preț: 651.84 lei
- 15% Preț: 649.06 lei
- Preț: 392.21 lei
- 15% Preț: 649.06 lei
- 15% Preț: 643.48 lei
- Preț: 398.15 lei
Preț: 660.04 lei
Preț vechi: 776.52 lei
-15% Nou
Puncte Express: 990
Preț estimativ în valută:
126.33€ • 131.37$ • 105.71£
126.33€ • 131.37$ • 105.71£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792339311
ISBN-10: 0792339312
Pagini: 544
Ilustrații: XV, 544 p.
Dimensiuni: 156 x 234 x 32 mm
Greutate: 0.96 kg
Ediția:1996
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792339312
Pagini: 544
Ilustrații: XV, 544 p.
Dimensiuni: 156 x 234 x 32 mm
Greutate: 0.96 kg
Ediția:1996
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 Dynamical systems. Phase space. Stochastic and chaotic systems. The number of degrees of freedom.- 2 Hamiltonian systems close to integrable. Appearance of stochastic motions in Hamiltonian systems.- 3 Attractors and repellers. Reconstruction of attractors from an experimental time series. Quantitative characteristics of attractors.- 4 Natural and forced oscillations and waves. Self-oscillations and auto-waves.- 5 Conservative systems.- 6 Non-conservative Hamiltonian systems and dissipative systems.- 7 Natural oscillations of non-linear oscillators.- 8 Natural oscillations in systems of coupled oscillators.- 9 Natural waves in bounded and unbounded continuous media. Solitons.- 10 Oscillations of a non-linear oscillator excited by an external force.- 11 Oscillations of coupled non-linear oscillators excited by an external periodic force.- 12 Parametric oscillations.- 13 Waves in semibounded media excited by perturbations applied to their boundaries.- 14 Forced oscillations and waves in active non-self-oscillatory systems. Turbulence. Burst instability. Excitation of waves with negative energy.- 15 Mechanisms of excitation and amplitude limitation of self-oscillations and auto-waves. Classification of self-oscillatory systems.- 16 Examples of self-oscillatory systems with lumped parameters. I.- 17 Examples of self-oscillatory systems with lumped parameters. II.- 18 Examples of self-oscillatory systems with high frequency power sources.- 19 Examples of self-oscillatory systems with time delay.- 20 Examples of continuous self-oscillatory systems with lumped active elements.- 21 Examples of self-oscillatory systems with distributed active elements.- 22 Periodic actions on self-oscillatory systems. Synchronization and chaotization of self-oscillations.- 23 Interaction between self-oscillatory systems.- 24 Examples of auto-waves and dissipative structures.- 25 Convective structures and self-oscillations in fluid. The onset of turbulence.- 26 Hydrodynamic and acoustic waves in subsonic jet and separated flows.- Appendix A Approximate methods for solving linear differential equations with slowly varying parameters.- A.1 JWKB Method.- A.2 Asymptotic method.- A.3 The Liouville—Green transformation.- A.4 The Langer transformation.- Appendix B The Whitham method and the stability of periodic running waves for the Klein—Gordon equation.