Cantitate/Preț
Produs

Semiparametric Methods in Econometrics: Lecture Notes in Statistics, cartea 131

Autor Joel L. Horowitz
en Limba Engleză Paperback – 30 apr 1998
Many econometric models contain unknown functions as well as finite- dimensional parameters. Examples of such unknown functions are the distribution function of an unobserved random variable or a transformation of an observed variable. Econometric methods for estimating population parameters in the presence of unknown functions are called "semiparametric." During the past 15 years, much research has been carried out on semiparametric econometric models that are relevant to empirical economics. This book synthesizes the results that have been achieved for five important classes of models. The book is aimed at graduate students in econometrics and statistics as well as professionals who are not experts in semiparametic methods. The usefulness of the methods will be illustrated with applications that use real data.
Citește tot Restrânge

Din seria Lecture Notes in Statistics

Preț: 63680 lei

Preț vechi: 74919 lei
-15% Nou

Puncte Express: 955

Preț estimativ în valută:
12186 12646$ 10186£

Carte tipărită la comandă

Livrare economică 17-31 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387984773
ISBN-10: 0387984771
Pagini: 220
Ilustrații: X, 220 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.32 kg
Ediția:1998
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1. Introduction.- 2. Single-Index Models.- 2.1 Definition of a Single-Index Model.- 2.2 Why Single-Index Models Are Useful.- 2.3 Other Approaches to Dimension Reduction.- 2.4 Identification of Single-Index Models.- 2.5 EstimatingGin a Single-Index Modei.- 2.6 Optimization Estimators ofß.- 2.7 Direct Semiparametric Estimators.- 2.8 Bandwidth Selection.- 2.9 An Empirical Example.- 3. Binary Response Models.- 3.1 Random-Coefficients Models.- 3.2 Identification.- 3.3 Estimation.- 3.4 Extensions of the Maximum Score and Smoothed Maximum Score Estimators.- 3.5 An Empirical Example.- 4. Deconvolution Problems.- 4.1 A Model of Measurement Error.- 4.2 Models for Panel Data.- 4.3 Extensions.- 4.4 An Empirical Example.- 5. Transformation Models.- 5.1 Estimation with ParametricTand NonparametricF.- 5.2 Estimation with NonparametricTand ParametricF.- 5.3 Estimation when BothTandFare Nonparametric.- 5.4 Predicting Y Conditional onX.- 5.5 An Empirical Example.- Appendix: Nonparametric Estimation.- A.1 Nonparametric Density Estimation.- A.2 Nonparametric Mean Regression.- References.