Singularities and Groups in Bifurcation Theory: Volume II: Applied Mathematical Sciences, cartea 69
Autor Martin Golubitsky, Ian Stewart, David G. Schaefferen Limba Engleză Hardback – 24 iun 1988
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1097.47 lei 6-8 săpt. | |
Springer – 8 oct 2011 | 1097.47 lei 6-8 săpt. | |
Hardback (1) | 1102.42 lei 6-8 săpt. | |
Springer – 24 iun 1988 | 1102.42 lei 6-8 săpt. |
Din seria Applied Mathematical Sciences
- 18% Preț: 431.09 lei
- 17% Preț: 435.89 lei
- 17% Preț: 437.01 lei
- 24% Preț: 906.78 lei
- 23% Preț: 659.05 lei
- Preț: 375.64 lei
- 18% Preț: 891.04 lei
- 18% Preț: 778.92 lei
- 18% Preț: 931.26 lei
- 15% Preț: 632.42 lei
- 24% Preț: 808.03 lei
- Preț: 382.65 lei
- Preț: 443.52 lei
- Preț: 186.35 lei
- Preț: 391.09 lei
- 18% Preț: 947.32 lei
- 15% Preț: 630.46 lei
- 15% Preț: 518.14 lei
- Preț: 404.85 lei
- Preț: 382.41 lei
- 18% Preț: 721.12 lei
- 18% Preț: 1382.41 lei
- 15% Preț: 696.82 lei
- Preț: 387.52 lei
- 18% Preț: 996.64 lei
- Preț: 395.05 lei
- 18% Preț: 1107.23 lei
- 18% Preț: 1111.87 lei
- 18% Preț: 1360.66 lei
- 18% Preț: 1106.74 lei
- 18% Preț: 1117.59 lei
- 15% Preț: 639.94 lei
Preț: 1102.42 lei
Preț vechi: 1344.41 lei
-18% Nou
Puncte Express: 1654
Preț estimativ în valută:
211.00€ • 221.36$ • 175.04£
211.00€ • 221.36$ • 175.04£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387966526
ISBN-10: 0387966528
Pagini: 536
Ilustrații: XVI, 536 p.
Dimensiuni: 156 x 234 x 30 mm
Greutate: 0.92 kg
Ediția:1988
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 0387966528
Pagini: 536
Ilustrații: XVI, 536 p.
Dimensiuni: 156 x 234 x 30 mm
Greutate: 0.92 kg
Ediția:1988
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
of Volume II.- XI Introduction.- §0. Introduction.- §1. Equations with Symmetry.- §2. Techniques.- §3. Mode Interactions.- §4. Overview.- XII Group-Theoretic Preliminaries.- §0. Introduction.- §1. Group Theory.- §2. Irreducibility.- §3. Commuting Linear Mappings and Absolute Irreducibility.- §4. Invariant Functions.- §5. Nonlinear Commuting Mappings.- §6.* Proofs of Theorems in §§4 and 5.- §7.* Tori.- XIII Symmetry-Breaking in Steady-State Bifurcation.- §0. Introduction.- §1. Orbits and Isotropy Subgroups.- §2. Fixed-Point Subspaces and the Trace Formula.- §3. The Equivariant Branching Lemma.- §4. Orbital Asymptotic Stability.- §5. Bifurcation Diagrams and DnSymmetry.- §6.† Subgroups of SO(3).- §7.† Representations of SO(3) and O(3): Spherical Harmonics.- §8.† Symmetry-Breaking from SO(3).- §9.† Symmetry-Breaking from O(3).- §10.* Generic Spontaneous Symmetry-Breaking.- Case Study 4 The Planar Bénard Problem.- §0. Introduction.- §1. Discussion of the PDE.- §2. One-Dimensional Fixed-Point Subspaces.- §3. Bifurcation Diagrams and Asymptotic Stability.- XIV Equivariant Normal Forms.- §0. Introduction.- §1. The Recognition Problem.- §2.* Proof of Theorem 1.3.- §3. Sample Computations of RT(h, ?).- §4. Sample Recognition Problems.- §5. Linearized Stability and ?-equivalence.- §6. Intrinsic Ideals and Intrinsic Submodules.- §7. Higher Order Terms.- XV Equivariant Unfolding Theory.- §0. Introduction.- §1. Basic Definitions.- §2. The Equivariant Universal Unfolding Theorem.- §3. Sample Universal ?-unfoldings.- §4. Bifurcation with D3 Symmetry.- §5.† The Spherical Bénard Problem.- §6.† Spherical Harmonics of Order 2.- §7.* Proof of the Equivariant Universal Unfolding Theorem.- §8.* The Equivariant PreparationTheorem.- Case Study 5 The Traction Problem for Mooney-Rivlin Material.- §0. Introduction.- §1. Reduction to D3 Symmetry in the Plane.- §2. Taylor Coefficients in the Bifurcation Equation.- §3. Bifurcations of the Rivlin Cube.- XVI Symmetry-Breaking in Hopf Bifurcation.- §0. Introduction.- §1. Conditions for Imaginary Eigenvalues.- §2. A Simple Hopf Theorem with Symmetry.- §3. The Circle Group Action.- §4. The Hopf Theorem with Symmetry.- §5. Birkhoff Normal Form and Symmetry.- §6. Floquet Theory and Asymptotic Stability.- §7. Isotropy Subgroups of ? × S1.- §8.* Dimensions of Fixed-Point Subspaces.- §9. Invariant Theory for ? × S1.- 10. Relationship Between Liapunov-Schmidt Reduction and Birkhoff Normal Form.- §11.* Stability in Truncated Birkhoff Normal Form.- XVII Hopf Bifurcation with O(2) Symmetry.- §0. Introduction.- §1. The Action of O(2) × S1.- §2. Invariant Theory for O(2) × S1.- §3. The Branching Equations.- §4. Amplitude Equations, D4 Symmetry, and Stability.- §5.† Hopf Bifurcation with O(n) Symmetry.- §6.† Bifurcation with D4 Symmetry.- §7. The Bifurcation Diagrams.- §8.† Rotating Waves and SO(2) or ZnSymmetry.- XVIII Further Examples of Hopf Bifurcation with Symmetry.- §0. Introduction.- §1. The Action of Dn × S1.- §2. Invariant Theory for Dn × S1.- §3. Branching and Stability for Dn.- §4. Oscillations of Identical Cells Coupled in a Ring.- §5.† Hopf Bifurcation with O(3) Symmetry.- §6.† Hopf Bifurcation on the Hexagonal Lattice.- XIX Mode Interactions.- §0. Introduction.- § 1. Hopf/Steady-State Interaction.- §2. Bifurcation Problems with Z2 Symmetry.- §3. Bifurcation Diagrams with Z2 Symmetry.- §4. Hopf/Hopf Interaction.- XX Mode Interactions with O(2) Symmetry.- §0. Introduction.- §l.†Steady-State Mode Interaction.- §2. Hopf/Steady-State Mode Interaction.- §3.† Hopf/Hopf Mode Interaction.- Case Study 6 The Taylor-Couette System.- §0. Introduction.- §1. Detailed Overview.- §2. The Bifurcation Theory Analysis.- §3. Finite Length Effects.