Theory of Group Representations: Grundlehren der mathematischen Wissenschaften, cartea 246
Autor M.A. Naimark Traducere de Edwin Hewitt Autor A.I Stern Traducere de Elizabeth Hewitten Limba Engleză Paperback – 6 noi 2011
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 18% Preț: 699.21 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- 20% Preț: 753.24 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- Preț: 338.54 lei
- 15% Preț: 565.23 lei
- 15% Preț: 676.77 lei
- Preț: 333.01 lei
- 15% Preț: 448.26 lei
- Preț: 337.84 lei
- Preț: 458.97 lei
- 15% Preț: 428.98 lei
- Preț: 432.67 lei
- 15% Preț: 671.33 lei
- Preț: 400.88 lei
- 15% Preț: 420.64 lei
- 15% Preț: 500.00 lei
- 15% Preț: 558.57 lei
- Preț: 334.90 lei
- 18% Preț: 689.22 lei
- Preț: 367.37 lei
- 15% Preț: 430.82 lei
- 15% Preț: 455.71 lei
- Preț: 439.85 lei
- Preț: 330.52 lei
- Preț: 343.10 lei
- Preț: 462.47 lei
- 15% Preț: 424.02 lei
- Preț: 397.78 lei
- Preț: 367.89 lei
- Preț: 396.94 lei
- 15% Preț: 550.38 lei
- Preț: 471.60 lei
- Preț: 341.65 lei
- Preț: 367.16 lei
- Preț: 397.52 lei
- 18% Preț: 686.95 lei
- Preț: 429.93 lei
- Preț: 366.15 lei
- Preț: 340.74 lei
Preț: 699.96 lei
Preț vechi: 853.61 lei
-18% Nou
Puncte Express: 1050
Preț estimativ în valută:
134.01€ • 145.69$ • 112.16£
134.01€ • 145.69$ • 112.16£
Carte tipărită la comandă
Livrare economică 14-28 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461381440
ISBN-10: 1461381444
Pagini: 584
Ilustrații: X, 568 p.
Dimensiuni: 152 x 229 x 31 mm
Greutate: 0.77 kg
Ediția:1982
Editura: Springer
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:New York, NY, United States
ISBN-10: 1461381444
Pagini: 584
Ilustrații: X, 568 p.
Dimensiuni: 152 x 229 x 31 mm
Greutate: 0.77 kg
Ediția:1982
Editura: Springer
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I Algebraic Foundations of Representation Theory.- §1. Fundamental Concepts of Group Theory.- §2. Fundamental Concepts and the Simplest Propositions of Representation Theory.- II Representations of Finite Groups.- §1. Basic Propositions of the Theory of Representations of Finite Groups.- §2. The Group Algebra of a Finite Group.- §3. Representations of the Symmetric Group.- §4. Induced Representations.- §5. Representations of the Group SL (2, Fq).- III Basic Concepts of the Theory of Representations of Topological Groups.- §1. Topological Spaces.- §2. Topological Groups.- §3. Definition of a Finite-Dimensional Representation of a Topological Group; Examples.- §4. General Definition of a Representation of a Topological Group.- IV Representations of Compact Groups.- §1. Compact Topological Groups.- §2. Representations of Compact Groups.- §3. The Group Algebra of a Compact Group.- V Finite-Dimensional Representations of Connected Solvable Groups; the Theorem of Lie.- §1. Connected Topological Groups.- §2. Solvable and Nilpotent Groups.- §3. Lie’s Theorem.- VI Finite-Dimensional Representations of the Full Linear Group.- §1. Some Subgroups of the Group G.- §2. Description of the Irreducible Finite-Dimensional Representations of the Group GL (n, C).- §3. Decomposition of a Finite-Dimensional Representation of the Group GL(n, C) into Irreducible Representations.- VII Finite-Dimensional Representations of the Complex Classical Groups.- §1. The Complex Classical Groups.- §2. Finite-Dimensional Continuous Representations of the Complex Classical Groups.- VIII Covering Spaces and Simply Connected Groups.- §1. Covering Spaces.- §2. Simply Connected Spaces and the Principle of Monodromy.- §3. Covering Groups.- §4. Simple Connectedness of Certain Groups.- IX Basic Concepts of Lie Groups and Lie Algebras.- §1. Analytic Manifolds.- §2. Lie Algebras.- §3. Lie Groups.- X Lie Algebras.- §1. Some Definitions.- §2. Representations of Nilpotent and Solvable Lie Algebras.- §3. Radicals ofa Lie Algebra.- §4. The Theory of Replicas.- §5. The Killing Form; Criteria for Solvability and Semisimplicity of a Lie Algebra.- §6. The Universal Enveloping Algebra of a Lie Algebra.- §7. Semisimple Lie Algebras.- §8. Cartan Subalgebras.- §9. The Structure of Semisimple Lie Algebras.- §10. Classification of Simple Lie Algebras.- §11. The Weyl Group of a Semisimple Lie Algebra.- §12. Linear Representations of Semisimple Complex Lie Algebras.- §13. Characters of Finite-Dimensional Irreducible Representations of a Semisimple Lie Algebra.- §14. Real Forms of Semisimple Complex Lie Algebras.- §15. General Theorems on Lie Algebras.- XI Lie Groups.- §1. The Campbell-Hausdorff Formula.- §2. Cartan’s Theorem.- §3. Lie’s Third Theorem.- §4. Some Properties of Lie Groups in the Large.- §5. Gauss’s Decomposition.- §6. Iwasawa’s Decomposition.- §7. The Universal Covering Group of a Semisimple Compact Lie Group.- §8. Complex Semisimple Lie Groups and Their Real Forms.- XII Finite-Dimensional Irreducible Representations of Semisimple Lie Groups.- §1. Representations of Complex Semisimple Lie Groups.- §2. Representations of Real Semisimple Lie Groups.- A: Monographs and Textbooks.- B: Journal Articles.