Cantitate/Preț
Produs

Specifying Statistical Models: From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches: Lecture Notes in Statistics, cartea 16

Editat de J. P. Florens, M. Mouchart, J.P. Raoult, L. Simar, A.F.M. Smith
en Limba Engleză Paperback – 24 ian 1983
During the last decades. the evolution of theoretical statistics has been marked by a considerable expansion of the number of mathematically and computationaly trac­ table models. Faced with this inflation. applied statisticians feel more and more un­ comfortable: they are often hesitant about their traditional (typically parametric) assumptions. such as normal and i. i. d . • ARMA forms for time-series. etc . • but are at the same time afraid of venturing into the jungle of less familiar models. The prob­ lem of the justification for taking up one model rather than another one is thus a crucial one. and can take different forms. (a) ~~~£ifi~~~iQ~ : Do observations suggest the use of a different model from the one initially proposed (e. g. one which takes account of outliers). or do they render plau­ sible a choice from among different proposed models (e. g. fixing or not the value of a certai n parameter) ? (b) tlQ~~L~~l!rQ1!iIMHQ~ : How is it possible to compute a "distance" between a given model and a less (or more) sophisticated one. and what is the technical meaning of such a "distance" ? (c) BQe~~~~~~ : To what extent do the qualities of a procedure. well adapted to a "small" model. deteriorate when this model is replaced by a more general one? This question can be considered not only. as usual. in a parametric framework (contamina­ tion) or in the extension from parametriC to non parametric models but also.
Citește tot Restrânge

Din seria Lecture Notes in Statistics

Preț: 37280 lei

Nou

Puncte Express: 559

Preț estimativ în valută:
7134 7503$ 5961£

Carte tipărită la comandă

Livrare economică 09-23 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387908090
ISBN-10: 0387908099
Pagini: 204
Ilustrații: XII, 204 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1983
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1. Protecting Against Gross Errors: The Aid of Bayesian Methods.- 2. Bayesian Approaches to Outliers and Robustness.- 3. The Probability Integral Tranformation for Non-Necessary Absolutely Continuous Distribution Functions, and its Application to Goodness-of-Fit Tests.- 4. Simulation in the General First Order Autoregressive Process (Unidimensional Normal Case).- 5. Non Parametric Prediction in Stationary Processes.- 6. Approximate Reductions of Bayesian Experiments.- 7. Theory and Applications of Least Squares Approximation in Bayesian Analysis.- 8. Non Parametric Bayesian Statistics: A Stochastic Process Approach.- 9. Robust Testing for Independent Non-Identically Distributed Variables and Markov Chains.- 10. On the Use of some Variation Distance Inequalities to estimate the Difference between Sample and Perturbed Sample.- 11. A Contribution to Robust Principal Component Analysis.- 12. From Non Parametric Regression to Non Parametric Prediction: Survey of the Mean Square Error and Original Results on the Predictogram.