The Analysis of Stochastic Processes using GLIM: Lecture Notes in Statistics, cartea 72
Autor James K. Lindseyen Limba Engleză Paperback – 23 apr 1992
Din seria Lecture Notes in Statistics
- 15% Preț: 631.86 lei
- 17% Preț: 490.19 lei
- 17% Preț: 460.28 lei
- 18% Preț: 945.92 lei
- 18% Preț: 1007.35 lei
- 18% Preț: 1231.47 lei
- Preț: 383.33 lei
- 15% Preț: 640.71 lei
- 15% Preț: 658.88 lei
- Preț: 436.14 lei
- 20% Preț: 561.42 lei
- 15% Preț: 639.59 lei
- 15% Preț: 633.53 lei
- 18% Preț: 943.25 lei
- 15% Preț: 641.38 lei
- 18% Preț: 995.97 lei
- 18% Preț: 943.25 lei
- 15% Preț: 643.00 lei
- 18% Preț: 947.18 lei
- 18% Preț: 942.63 lei
- 18% Preț: 886.62 lei
- Preț: 383.12 lei
- 15% Preț: 633.35 lei
- 15% Preț: 635.65 lei
- Preț: 393.74 lei
- 15% Preț: 632.70 lei
- 15% Preț: 637.28 lei
- 15% Preț: 702.87 lei
- 15% Preț: 642.68 lei
- 15% Preț: 644.63 lei
- 15% Preț: 645.14 lei
- Preț: 382.36 lei
- 15% Preț: 636.30 lei
- 15% Preț: 647.92 lei
- Preț: 380.63 lei
- 18% Preț: 887.05 lei
- 15% Preț: 634.32 lei
- 15% Preț: 648.74 lei
- Preț: 378.92 lei
- 15% Preț: 648.56 lei
- 15% Preț: 647.59 lei
- 18% Preț: 780.37 lei
- 15% Preț: 641.20 lei
- 18% Preț: 1102.69 lei
- 15% Preț: 643.16 lei
- Preț: 384.70 lei
- 15% Preț: 640.37 lei
Preț: 642.83 lei
Preț vechi: 756.27 lei
-15% Nou
Puncte Express: 964
Preț estimativ în valută:
123.06€ • 128.40$ • 103.16£
123.06€ • 128.40$ • 103.16£
Carte tipărită la comandă
Livrare economică 12-26 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387977614
ISBN-10: 0387977619
Pagini: 294
Ilustrații: VI, 294 p.
Dimensiuni: 170 x 242 x 16 mm
Greutate: 0.49 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387977619
Pagini: 294
Ilustrații: VI, 294 p.
Dimensiuni: 170 x 242 x 16 mm
Greutate: 0.49 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Normal Theory Models and Some Extensions.- 1. Linear Regression.- 2. Analysis of Variance.- 3. Analysis of Covariance.- 4. The Extension to Non-Normal Models.- 5. Fitting Distributions.- 6. Further GLIM Instructions.- 2. Markov Chains.- 1. Binary Point Processes.- 2. Multi-state Markov Chains.- 3. Stationarity.- 4. Reversibility and Equilibrium.- 5. Random Walks.- 6. The Mover-Stayer Model.- 3. Point and Renewal Processes.- 1. Point Processes.- 2. The Poisson Process.- 3. Kaplan-Meier Estimation.- 4. Probability Plots.- 5. Fitting a Distribution.- 6. A Nonhomogeneous Point Process.- 7. An Example with Periodicity.- 4. Survival Curves.- 1. Censored Data.- 2. The Hazard Function.- 3. Exponential Distribution.- 4. Pareto Distribution.- 5. Weibull Distribution.- 6. Extreme Value Distribution.- 7. Log Normal Distribution.- 8. Log Logistic Distribution.- 9. Gamma Distribution.- 10. Inverse Gaussian Distribution.- 11. Cox Proportional Hazards Model.- 12. Piecewise Exponential Distribution.- 5. Growth Curves.- 1. Exponential Growth: Continuous Data.- 2. Exponential Growth: Count Data.- 3. The Logistic Growth Curve.- 4. The Gomperz Growth Curve.- 6. Time Series: The Time Domain.- 1. Trends and Correlograms.- 2. Autoregression and Random Walks.- 3. Examination of the Distribution Assumptions.- 4. Mis-specification of the Linear Model.- 5. Serial Correlation in Regression Analysis.- 7. Time Series: The Frequency Domain.- 1. Data Preparation: Filtering and Tapering.- 2. Periodograms.- 3. Fitting an Autoregression by Spectral Analysis.- 4. Bloomfield’s Exponential Model.- 5. Comparison of Spectra.- 8. Repeated Measurements.- 1. Descriptive Methods.- 2. Autoregression.- 3. Random Effects.- 4. A Generalized Linear Autoregression “Model”.- 5. A Generalized Linear RandomEffects Model.- 6. A Multivariate Logistic Model.- 9. Stochastic Processes and Generalized Linear Models.- 1. A Logistic Growth Curve with Autoregression.- 2. Conditional Generalized Linear Autoregression.- 3. Exponential Dispersion Models.- 4. Two Sources of Dependence in Panel Data.- 5. Binary Crossover Trials.- 6. A Binary Model for Learning.- Appendix I - GLIM Commands.- Appendix II - GLIM Macros.- Appendix III - Data Tables.- References.