Topics in Survey Sampling: Lecture Notes in Statistics, cartea 153
Autor Parimal Mukhopadhyayen Limba Engleză Paperback – 14 sep 2000
Din seria Lecture Notes in Statistics
- 15% Preț: 631.86 lei
- Preț: 385.84 lei
- 17% Preț: 490.20 lei
- 17% Preț: 460.30 lei
- 18% Preț: 945.92 lei
- 20% Preț: 561.44 lei
- 18% Preț: 943.25 lei
- 18% Preț: 943.25 lei
- 18% Preț: 990.57 lei
- 15% Preț: 641.38 lei
- Preț: 428.67 lei
- 15% Preț: 633.53 lei
- 15% Preț: 658.88 lei
- Preț: 383.33 lei
- 15% Preț: 640.71 lei
- 18% Preț: 947.18 lei
- 18% Preț: 1007.35 lei
- 18% Preț: 942.63 lei
- 15% Preț: 639.59 lei
- 18% Preț: 1231.47 lei
- 15% Preț: 643.00 lei
- 18% Preț: 886.62 lei
- Preț: 383.12 lei
- 15% Preț: 633.35 lei
- 15% Preț: 635.65 lei
- Preț: 393.74 lei
- 15% Preț: 632.70 lei
- 15% Preț: 637.28 lei
- 15% Preț: 702.87 lei
- 15% Preț: 642.68 lei
- 15% Preț: 644.63 lei
- 15% Preț: 645.14 lei
- Preț: 382.36 lei
- 15% Preț: 636.30 lei
- 15% Preț: 647.92 lei
- Preț: 380.63 lei
- 18% Preț: 887.05 lei
- 15% Preț: 634.32 lei
- 15% Preț: 648.74 lei
- Preț: 378.92 lei
- 15% Preț: 648.56 lei
- 15% Preț: 647.59 lei
- 18% Preț: 780.37 lei
- 15% Preț: 641.20 lei
- 18% Preț: 1102.69 lei
- 15% Preț: 643.16 lei
- Preț: 384.70 lei
Preț: 388.90 lei
Nou
Puncte Express: 583
Preț estimativ în valută:
74.42€ • 80.81$ • 62.52£
74.42€ • 80.81$ • 62.52£
Carte tipărită la comandă
Livrare economică 22 aprilie-06 mai
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387951089
ISBN-10: 0387951083
Pagini: 292
Ilustrații: XI, 292 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.44 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387951083
Pagini: 292
Ilustrații: XI, 292 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.44 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 The Basic Concepts.- 1.1 Introduction.- 1.2 The Fixed Population model.- 1.3 Different Types of Sampling Designs.- 1.4 The Estimators.- 1.5 Some Inferential Problems under Fixed Population Set-Up.- 1.6 Plan of the Book.- 2 Inference under Frequentist Theory Approach.- 2.1 Introduction.- 2.2 Principles of Inference Based on Theory of Prediction.- 2.3 Robustness of Model-Dependent Optimal Strategies.- 2.4 A Class of Predictors under Model ?(X, v).- 2.5 Asymptotic Unbiased Estimation of Design-Variance of $${{\hat{T}}_{{GR}}}$$.- 3 Bayes and Empirical Bayes Prediction of a Finite Population Total.- 3.1 Introduction.- 3.2 Bayes and Minimax Prediction of Finite Population Parameters.- 3.3 Bayes Prediction of a Finite Population Total under Normal Regression Model.- 3.4 Bayes Prediction under an Asymmetric Loss Function.- 3.5 James-Stein Estimator and Associated Estimators.- 3.6 Empirical Bayes Prediction of Population Total under Simple Location Model.- 3.7 EB-Prediction under Normal Model using Covariates.- 3.8 Applications in Small Area Estimation.- 3.9 Bayes Prediction under Random Error Variance Model.- 3.10 Exercises.- 4 Modifications of Bayes Procedure.- 4.1 Introduction.- 4.2 Linear Bayes Prediction.- 4.3 Restricted Linear Bayes Prediction.- 4.4 Constrained Bayes Prediction.- 4.5 Bayesian Robustness under a Class of Alternative Models.- 4.6 Robust Bayes Estimation under Contaminated Priors.- 4.7 Exercises.- 5 Estimation of Finite Population Variance, Regression Coefficient.- 5.1 Introduction.- 5.2 Design-Based Estimation of a Finite Population Variance.- 5.3 Model-Based Prediction of V.- 5.4 Bayes Prediction of V(y).- 5.5 Asymptotic Properties of Sample Regression Coefficient.- 5.6 PM-Unbiased Estimation of Slope Parameters in the Linear Regression Model.- 5.7Optimal Prediction of Finite Population Regression Coefficient under Multiple Regression Model.- 5.8 Exercises.- 6 Estimation of a Finite Population Distribution Function.- 6.1 Introduction.- 6.2 Design-Based Estimators.- 6.3 Model-Based Predictors.- 6.4 Conditional Approach.- 6.5 Asymptotic Properties of the Estimators.- 6.6 Non-Parametric Kernel Estimators.- 6.7 Desirable Properties of an Estimator.- 6.8 Empirical Studies.- 6.9 Best Unbiased Prediction (BUP) under Gaussian Superpopulation Model.- 6.10 Estimation of Median.- 7 Prediction in Finite Population under Measurement Error Models.- 7.1 Introduction.- 7.2 Additive Measurement Error Models.- 7.3 Prediction under Multiplicative Error-in-Variables Model.- 7.4 Exercises.- 8 Miscellaneous Topics.- 8.1 Introduction.- 8.2 Calibration Estimators.- 8.3 Post-Stratification.- 8.4 Design-Based Conditional Unbiasedness.- 8.5 Exercises.- References.- Author Index.