Cantitate/Preț
Produs

Topological Vector Spaces: Graduate Texts in Mathematics, cartea 3

M.P. Wolff Autor H. H. Schaefer
en Limba Engleză Paperback – 27 sep 2012
The present book is intended to be a systematic text on topological vector spaces and presupposes familiarity with the elements of general topology and linear algebra. The author has found it unnecessary to rederive these results, since they are equally basic for many other areas of mathematics, and every beginning graduate student is likely to have made their acquaintance. Simi­ larly, the elementary facts on Hilbert and Banach spaces are widely known and are not discussed in detail in this book, which is :plainly addressed to those readers who have attained and wish to get beyond the introductory level. The book has its origin in courses given by the author at Washington State University, the University of Michigan, and the University of Ttibingen in the years 1958-1963. At that time there existed no reasonably ccmplete text on topological vector spaces in English, and there seemed to be a genuine need for a book on this subject. This situation changed in 1963 with the appearance of the book by Kelley, Namioka et al. [1] which, through its many elegant proofs, has had some influence on the final draft of this manuscript. Yet the two books appear to be sufficiently different in spirit and subject matter to justify the publication of this manuscript; in particular, the present book includes a discussion of topological tensor products, nuclear spaces, ordered topological vector spaces, and an appendix on positive operators.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 47082 lei  6-8 săpt.
  Springer – 27 sep 2012 47082 lei  6-8 săpt.
Hardback (1) 64315 lei  6-8 săpt.
  Springer – 24 iun 1999 64315 lei  6-8 săpt.

Din seria Graduate Texts in Mathematics

Preț: 47082 lei

Preț vechi: 55391 lei
-15% Nou

Puncte Express: 706

Preț estimativ în valută:
9017 9290$ 7554£

Carte tipărită la comandă

Livrare economică 24 februarie-10 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461271550
ISBN-10: 146127155X
Pagini: 364
Ilustrații: XII, 349 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.51 kg
Ediția:2nd ed. 1999. Softcover reprint of the original 2nd ed. 1999
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics

Locul publicării:New York, NY, United States

Public țintă

Graduate

Cuprins

Prerequisites.- A. Sets and Order.- B. General Topology.- C. Linear Algebra.- I. Topological Vector Spaces.- 1 Vector Space Topologies.- 2 Product Spaces, Subspaces, Direct Sums, Quotient Spaces.- 3 Topological Vector Spaces of Finite Dimension.- 4 Linear Manifolds and Hyperplanes.- 5 Bounded Sets.- 6 Metrizability.- 7 Complexification.- Exercises.- II. Locally Convex Topological Vector Spaces.- 1 Convex Sets and Semi-Norms.- 2 Normed and Normable Spaces.- 3 The Hahn-Banach Theorem.- 4 Locally Convex Spaces.- 5 Projective Topologies.- 6 Inductive Topologies.- 7 Barreled Spaces.- 8 Bornological Spaces.- 9 Separation of Convex Sets.- 10 Compact Convex Sets.- Exercises.- III. Linear Mappings.- 1 Continuous Linear Maps and Topological Homomorphisms.- 2 Banach’s Homomorphism Theorem.- 3 Spaces of Linear Mappings.- 4 Equicontinuity. The Principle of Uniform Boundedness and the Banach-Steinhaus Theorem.- 5 Bilinear Mappings.- 6 Topological Tensor Products.- 7 Nuclear Mappings and Spaces.- 8 Examples of Nuclear Spaces.- 9 The Approximation Property. Compact Maps.- Exercises.- IV. Duality.- 1 Dual Systems and Weak Topologies.- 2 Elementary Properties of Adjoint Maps.- 3 Locally Convex Topologies Consistent with a Given Duality.The Mackey-Arens Theorem.- 4 Duality of Projective and Inductive Topologies.- 5 Strong Dual of a Locally Convex Space. Bidual. Reflexive Spaces.- 6 Dual Characterization of Completeness. Metrizable Spaces. Theorems of Grothendieck, Banach-Dieudonné, and Krein-Šmulian.- 7 Adjoints of Closed Linear Mappings.- 8 The General Open Mapping and Closed Graph Theorems.- 9 Tensor Products and Nuclear Spaces.- 10 Nuclear Spaces and Absolute Summability.- 11 Weak Compactness. Theorems of Eberlein and Krein.- Exercises.- V. Order Structures.- 1 Ordered VectorSpaces over the Real Field.- 2 Ordered Vector Spaces over the Complex Field.- 3 Duality of Convex Cones.- 4 Ordered Topological Vector Spaces.- 5 Positive Linear Forms and Mappings.- 6 The Order Topology.- 7 Topological Vector Lattices.- 8 Continuous Functions on a Compact Space. Theorems of Stone-Weierstrass and Kakutani.- Exercises.- VI. C*—and W*—Algebras.- 1 Preliminaries.- 2 C*-Algebras.The Gelfand Theorem.- 3 Order Structure of a C*-Algebra.- 4 Positive Linear Forms. Representations.- 5 Projections and Extreme Points.- 6 W*-Algebras.- 7 Von Neumann Algebras. Kaplansky’s Density Theorem.- 8 Projections and Types of W*-Algebras.- Exercises.- Appendix. Spectral Properties of Positive Operators.- 1 Elementary Properties of the Resolvent.- 2 Pringsheim’s Theorem and Its Consequences.- 3 The Peripheral Point Spectrum.- Index of Symbols.

Recenzii

"The book has firmly established itself both as a superb introduction to the subject and as a very common source of reference. It is beccoming evident that the book itself will only become irrelevant and pale into insignificance when (and if!) the entire subject of topological vector spaces does. An attractive feature of the book is that it is essentially self-contained, and thus perfectly suitable for senior students having a basic training in the area of elementary functional analysis and set-theoretic topology. My view - let even possibly biased for sentimental resasons - is that the book under review would make for a very practical and useful addition to every matahemtaician's personal office collection."
Vladimir Pestov in Nesletter of the New Zealand Mathematical Society, August 2000
Second Edition
H.H. Schaefer and M.P. Wolff
Topological Vector Spaces
"The reliable textbook, highly esteemed by several generations of students since its first edition in 1966 . . . The book contains a large number of interesting exercises . . . the book of Schaefer and Wolff is worth reading."—ZENTRALBLATT MATH