Cantitate/Preț
Produs

When Does Bootstrap Work?: Asymptotic Results and Simulations: Lecture Notes in Statistics, cartea 77

Autor Enno Mammen
en Limba Engleză Paperback – 29 iul 1992

Din seria Lecture Notes in Statistics

Preț: 71059 lei

Preț vechi: 86657 lei
-18% Nou

Puncte Express: 1066

Preț estimativ în valută:
13606 14167$ 11288£

Carte tipărită la comandă

Livrare economică 12-26 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387978673
ISBN-10: 0387978674
Pagini: 201
Ilustrații: VI, 201 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

0. Introduction.- 1. Bootstrap and Asymptotic Normality.- 1. Introduction.- 2. Bootstrapping linear functionals. The i.i.d. case.- 3. Bootstrapping smooth functionals.- 4. Bootstrap and wild bootstrap in non i.i.d. models.- 5. Some simulations.- 6. Proofs.- Figures.- 2. An Example Where Bootstrap Fails: Comparing Nonparametric Versus Parametric Regression Fits.- 1. A goodness-of-fit test.- 2. How to bootstrap. Bootstrap and wild bootstrap.- 3. Proofs.- 3. A Bootstrap Success Story: Using Nonparametric Density Estimates in K-Sample Problems.- 1. Bootstrap tests.- 2. Bootstrap confidence regions.- 3. Proofs.- 4. A Bootstrap Test on the Number of Modes of a Density.- 1. Introduction.- 2. The number of modes of a kernel density estimator.- 3. Bootstrapping the test statistic.- 4. Proofs.- Figures.- 5. Higher-Order Accuracy of Bootstrap for Smooth Functionals.- 1. Introduction.- 2. Bootstrapping smooth functionals.- 3. Some more simulations. Bootstrapping an M-estimate.- 4. Proof of the theorem.- Figures.- 6. Bootstrapping Linear Models.- 1. Bootstrapping the least squares estimator.- 2. Bootstrapping F-tests.- 3. Proof of Theorem 3.- 7. Bootstrapping Robust Regression.- 1. Introduction.- 2. Bootstrapping M-estimates.- 3. Stochastic expansions of M-estimates.- 4. Proofs.- Figures.- 8. Bootstrap and wild Bootstrap for High-Dimensional Linear Random Design Models.- 1. Introduction.- 2. Consistency of bootstrap for linear contrasts.- 3. Accuracy of the bootstrap.- 4. Bootstrapping F-tests.- 5. Proofs.- Tables.- Figures.- 9. References.