Cantitate/Preț
Produs

Einführung in die Funktionentheorie mehrerer Veränderlicher: Hochschultext

Autor H. Grauert, K. Fritzsche
de Limba Germană Paperback – 31 iul 1974

Din seria Hochschultext

Preț: 27998 lei

Nou

Puncte Express: 420

Preț estimativ în valută:
5359 5573$ 4491£

Carte tipărită la comandă

Livrare economică 13-27 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540066729
ISBN-10: 3540066721
Pagini: 228
Ilustrații: VI, 216 S.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.34 kg
Ediția:1974
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Hochschultext

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Lower undergraduate

Cuprins

I. Holomorphe Funktionen.- Vorbemerkungen.- § 1. Potenzreihen.- § 2. Komplex differenzierbare Funktionen.- § 3. Das Cauchy-Integral.- § 4. Identitätssätze.- § 5. Entwicklung in Reinhardtschen Körpern.- § 6. Reelle und komplexe Differenzierbarkeit.- § 7. Holomorphe Abbildungen.- II. Holomorphiegebiete.- § 1. Der Kontinuitätssatz.- § 2. Pseudokonvexität.- § 3. Holomorphiekonvexität.- § 4. Der Satz von Thullen.- § 5. Holomorph-konvexe Gebiete.- § 6. Beispiele.- § 7. Riemannsche Gebiete über dem ?n.- § 8. Holomorphiehüllen.- III. Der Weierstraßsche Vorbereitungssatz.- § 1. Potenzreihenalgebren.- § 2. Die Weierstraßsche Formel.- § 3. Konvergente Potenzreihen.- § 4. Primfaktorzerlegung.- § 5. Weitere Folgerungen (Henselsche Ringe, Noethersche Ringe).- § 6. Analytische Mengen.- IV. Garbentheorie.- § 1. Garben von Mengen.- § 2. Garben mit algebraischen Strukturen.- § 3. Analytische Garbenmorphismen.- § 4. Kohärente Garben.- V. Komplexe Mannigfaltigkeiten.- § 1. Komplex-beringte Räume.- § 2. Funktionentheorie auf komplexen Mannigfaltigkeiten.- § 3. Beispiele komplexer Mannigfaltigkeiten.- § 4. Abschlüsse des ?n.- VI. Cohomologietheorie.- § 1. Die welke Cohomologie.- § 2. Die ?echsche Cohomologie.- § 3. Doppelkomplexe.- § 4. Die Cohomologiesequenz.- § 5. Hauptsätze über Steinsche Mannigfaltigkeiten.- VIII. Reelle Methoden.- § 1. Tangentialvektoren.- § 2. Differentialformen auf komplexen Mannigfaltigkeiten.- § 3. Cauchy-Integrale.- § 4. Das Lemma von Dolbeault.- § 5. Feine Garben (Sätze von Dolbeault und de Rham).- Symbolverzeichnis.