Modelltheorie: Eine Einführung in die mathematische Logik und Grundlagentheorie: Hochschultext
Autor Georg Kreisel Traducere de Joachim Jung Autor Jean-Louis Krivinede Limba Germană Paperback – 23 iun 1972
Din seria Hochschultext
- Preț: 345.68 lei
- 11% Preț: 541.19 lei
- Preț: 347.22 lei
- Preț: 427.49 lei
- Preț: 483.92 lei
- Preț: 357.43 lei
- Preț: 348.39 lei
- Preț: 358.58 lei
- Preț: 484.08 lei
- Preț: 439.64 lei
- Preț: 481.97 lei
- Preț: 494.70 lei
- Preț: 488.92 lei
- Preț: 493.89 lei
- 15% Preț: 465.98 lei
- Preț: 487.19 lei
- Preț: 426.18 lei
- Preț: 434.44 lei
- Preț: 348.77 lei
- Preț: 348.00 lei
- 15% Preț: 466.95 lei
- Preț: 469.16 lei
- Preț: 486.54 lei
- Preț: 365.70 lei
- Preț: 365.53 lei
- Preț: 481.97 lei
- Preț: 413.84 lei
- Preț: 418.29 lei
- Preț: 434.44 lei
- Preț: 427.71 lei
- Preț: 485.95 lei
- Preț: 482.74 lei
- Preț: 351.66 lei
- Preț: 443.28 lei
- Preț: 459.53 lei
- Preț: 418.83 lei
- Preț: 351.88 lei
- Preț: 351.11 lei
- Preț: 489.48 lei
- 20% Preț: 418.77 lei
- Preț: 493.89 lei
- Preț: 455.51 lei
- Preț: 226.70 lei
- Preț: 346.86 lei
- 15% Preț: 472.19 lei
- Preț: 492.96 lei
- Preț: 423.47 lei
- Preț: 279.98 lei
- Preț: 437.34 lei
Preț: 359.16 lei
Nou
Puncte Express: 539
Preț estimativ în valută:
68.73€ • 70.91$ • 58.17£
68.73€ • 70.91$ • 58.17£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540056546
ISBN-10: 3540056548
Pagini: 296
Ilustrații: XVI, 278 S.
Dimensiuni: 178 x 254 x 16 mm
Greutate: 0.52 kg
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Hochschultext
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540056548
Pagini: 296
Ilustrații: XVI, 278 S.
Dimensiuni: 178 x 254 x 16 mm
Greutate: 0.52 kg
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Hochschultext
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
Lower undergraduateCuprins
0 - Vorbereitungen. Definitionsschemata.- 1 - Aussagenkalkül.- Aufgaben.- 2 - Prädikatenkalkül.- Aufgaben.- 3 - Prädikatenkalkül mit Gleichheit.- Aufgaben.- 4 - Quantorenelimination.- Dichte Ordnungen mit erstem und letztem Element.- Diskrete Ordnungen ohne erstes und letztes Element.- Gewisse kommutative Gruppen mit diskreter Totalordnung.- Algebraisch abgeschlossene Körper.- Reell abgeschlossene Körper.- Atomare Boolesche Ringe.- Aufgaben.- 5 - Prädikatenkalkül mit mehreren Objektsorten.- Prädikatenkalkül mit k Objektsorten und Gleichheit.- Sprachen mit k Objektsorten, Gleichheit und Funktionszeichen.- Die Theorie der endlichen Typen.- Aufgaben.- 6 - Maximale Modelle, Modelle unendlicher Formeln.- Reduktion einer Klasse von Formeln zweiter Stufe.- Unendliche Formeln, die endlichstellige Relationen definieren.- Abzählbare Sprachen: Abz&hlbare Mengen von unendlichen Formeln.- Aufgaben.- 7 - Definierbarkeit.- Aufgaben.- ANHANG I - Die Axiomatische Methode.- ANHANG II - Grundlagen der Mathematik.- Die formalistisch-positivistische Doktrin der mathematischen Präzision.- Die Doktrin formaler Präzision.- Grundlegende Unterscheidungen.- Beispiele informaler Präzision.- Mängel der formalistischen Präzisionsdoktrin.- Der pragmatische Wert der formalistischen Doktrin.- Pädagogisches zur Grundlagenforschung.- A - Mengentheoretisch-semantische Grundlagen.- Zusammenfassung.- 1. Wie analysiert man intuitive Mathematik mit diesen Grundbegriffen.- Endliche Mengen: Verallgemeinerte Realisierungen. Der intuitive Ordinalzahlbegriff.- 2. Wie findet man Axiome für die mengentheoretischen Grundbegriffe?.- 3. Wie kann man die bisherige Theorie A*[A] verstärken?.- 4. Historische Bemerkungen. Weitere Informationen über den intuitiven Gültigkeitsbegriff.- B -Kombinatorische Grundlagen.- Zusammenfassung.- 0 - Kombinatorisches Schließen.- (a) Kombinatorische Sprachen und Realisierungen.- (b) Kombinatorische Realisierung einer Formel: Kombinatorische Giiltigkeit.- (c) Mengentheoretische Übersetzungen kombinatorischer Identitäten; nicht-kombinatorische Beweise dieser Übersetzungen.- 1 - Wie analysiert man intuitive Mathematik mit den kombinatorischen Grundbegriffen?.- (a) Repräsentation (Beschreibung) des mathe matischen Schließens mittels formaler Systeme.- (b) Reduktion intuitiver Prinzipien auf kombinatorische Prinzipien (Hilbertsches Widerspruchsfreiheitsproblem.- (c) Positive Lösungen zum Hilbertschen Problem.- 2 - Wie findet man Axiome für die kombinatorischen Grundbegriffe?.- (a).- (c) Ein formales System.- Konsequenzen für das Hilbertsche Programm.- 3 - Ausbau der Theorie.- 4 - Kritische Zusammenfassung.- (a) Vergleich zwischen mengentheoretischen und kombinatorischen Grundlagen.- (b) Doktrinäre Grundlagen.- (c) Grober Formalismus.- 5 - Aktuelle Forschungsaufgaben.- C - Vergleich zwischen der semantischen und syntaktischen (kombinatorischen) Einführung in die mathematische Logik.