Gaussian Random Processes: Stochastic Modelling and Applied Probability, cartea 9
Autor I.A. Ibragimov Traducere de A.B. Aries Autor Y.A. Rozanoven Limba Engleză Paperback – 21 noi 2011
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 387.96 lei 6-8 săpt. | |
Springer – 21 noi 2011 | 387.96 lei 6-8 săpt. | |
Hardback (1) | 732.52 lei 6-8 săpt. | |
Springer – 22 dec 1978 | 732.52 lei 6-8 săpt. |
Din seria Stochastic Modelling and Applied Probability
- 17% Preț: 464.60 lei
- 18% Preț: 805.44 lei
- 18% Preț: 1110.72 lei
- 18% Preț: 947.35 lei
- Preț: 390.84 lei
- 18% Preț: 952.40 lei
- 15% Preț: 648.56 lei
- 18% Preț: 951.91 lei
- 15% Preț: 637.13 lei
- 18% Preț: 793.63 lei
- Preț: 391.02 lei
- Preț: 401.42 lei
- 15% Preț: 639.08 lei
- 18% Preț: 733.33 lei
- 18% Preț: 785.11 lei
- 15% Preț: 593.42 lei
- 18% Preț: 1114.96 lei
- 15% Preț: 643.16 lei
- Preț: 390.63 lei
- 15% Preț: 645.60 lei
- 15% Preț: 641.71 lei
- 18% Preț: 954.62 lei
- 15% Preț: 645.14 lei
- 18% Preț: 947.50 lei
- 18% Preț: 804.96 lei
- 15% Preț: 644.63 lei
- 20% Preț: 469.59 lei
- 20% Preț: 581.39 lei
Preț: 387.96 lei
Nou
Puncte Express: 582
Preț estimativ în valută:
74.24€ • 77.04$ • 62.06£
74.24€ • 77.04$ • 62.06£
Carte tipărită la comandă
Livrare economică 18 martie-01 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461262770
ISBN-10: 1461262771
Pagini: 292
Ilustrații: X, 277 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:Softcover reprint of the original 1st ed. 1978
Editura: Springer
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:New York, NY, United States
ISBN-10: 1461262771
Pagini: 292
Ilustrații: X, 277 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:Softcover reprint of the original 1st ed. 1978
Editura: Springer
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I Preliminaries.- I.1 Gaussian Probability Distribution in a Euclidean Space.- I.2 Gaussian Random Functions with Prescribed Probability Measure.- I.3 Lemmas on the Convergence of Gaussian Variables.- I.4 Gaussian Variables in a Hilbert Space.- I.5 Conditional Probability Distributions and Conditional Expectations.- I.6 Gaussian Stationary Processes and the Spectral Representation.- II The Structures of the Spaces H(T) and LT(F).- II. 1 Preliminaries.- II.2 The Spaces L+(F) and L-(F).- II.3 The Construction of Spaces LT(F) When T Is a Finite Interval.- II.4 The Projection of L+(F) on L-(F).- II.5 The Structure of the ?-algebra of Events U(T).- III Equivalent Gaussian Distributions and their Densities.- III.1 Preliminaries.- III.2 Some Conditions for Gaussian Measures to be Equivalent.- III.3 General Conditions for Equivalence and Formulas for Density of Equivalent Distributions.- III.4 Further Investigation of Equivalence Conditions.- IV Conditions for Regularity of Stationary Random Processes.- IV.1 Preliminaries.- IV.2 Regularity Conditions and Operators Bt.- IV.3 Conditions for Information Regularity.- IV.4 Conditions for Absolute Regularity and Processes with Discrete Time.- IV.5 Conditions for Absolute Regularity and Processes with Continuous Time.- V Complete Regularity and Processes with Discrete Time.- V.l Definitions and Preliminary Constructions with Examples.- V.2 The First Method of Study: Helson—Sarason’s Theorem.- V.3 The Second Method of Study: Local Conditions.- V.4 Local Conditions (continued).- V.5 Corollaries to the Basic Theorems with Examples.- V.6 Intensive Mixing.- VI Complete Regularity and Processes with Continuous Time.- VI.1 Introduction.- VI.2 The Investigation of a Particular Function ?(T;µ).- VI.3 The Proof of the Basic Theorem onNecessity.- VI.4 The Behavior of the Spectral Density on the Entire Line.- VI.5 Sufficiency.- VI.6 A Special Class of Stationary Processes.- VII Filtering and Estimation of the Mean.- VII.1 Unbiased Estimates.- VII.2 Estimation of the Mean Value and the Method of Least Squares.- VII.3 Consistent Pseudo-Best Estimates.- VII.4 Estimation of Regression Coefficients.- References.