Machine Learning: An Artificial Intelligence Approach: Symbolic Computation
Editat de R.S. Michalski, J.G. Carbonell, T.M. Mitchellen Limba Engleză Paperback – 3 oct 2013
Din seria Symbolic Computation
- 20% Preț: 350.21 lei
- 20% Preț: 651.89 lei
- 20% Preț: 647.61 lei
- 20% Preț: 649.09 lei
- 20% Preț: 648.44 lei
- 20% Preț: 639.35 lei
- 20% Preț: 653.06 lei
- 20% Preț: 642.19 lei
- 20% Preț: 651.09 lei
- 20% Preț: 659.97 lei
- 20% Preț: 645.31 lei
- 20% Preț: 648.44 lei
- 20% Preț: 650.27 lei
- 20% Preț: 646.47 lei
- Preț: 394.29 lei
- 20% Preț: 326.46 lei
- 20% Preț: 342.28 lei
- 20% Preț: 339.99 lei
- 20% Preț: 641.01 lei
- 20% Preț: 657.99 lei
- 20% Preț: 648.26 lei
- 20% Preț: 661.47 lei
- 15% Preț: 638.89 lei
- 20% Preț: 657.67 lei
- 20% Preț: 652.73 lei
- 20% Preț: 330.42 lei
- 20% Preț: 709.98 lei
- 20% Preț: 656.03 lei
- 20% Preț: 324.64 lei
- 20% Preț: 757.48 lei
- 20% Preț: 355.67 lei
- 20% Preț: 328.27 lei
- 20% Preț: 330.24 lei
- 20% Preț: 342.96 lei
- 20% Preț: 555.53 lei
Preț: 834.69 lei
Preț vechi: 1043.36 lei
-20% Nou
Puncte Express: 1252
Preț estimativ în valută:
159.76€ • 166.16$ • 133.88£
159.76€ • 166.16$ • 133.88£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783662124079
ISBN-10: 3662124076
Pagini: 588
Ilustrații: XI, 572 p. 25 illus.
Dimensiuni: 170 x 244 x 31 mm
Greutate: 0.93 kg
Ediția:1983
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Symbolic Computation, Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3662124076
Pagini: 588
Ilustrații: XI, 572 p. 25 illus.
Dimensiuni: 170 x 244 x 31 mm
Greutate: 0.93 kg
Ediția:1983
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Symbolic Computation, Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
One General Issues in Machine Learning.- 1 An Overview of Machine Learning.- 2 Why Should Machines Learn?.- Two Learning from Examples.- 3 A Comparative Review of Selected Methods for Learning from Examples.- 4 A Theory and Methodology of Inductive Learning.- Three Learning in Problem-Solving and Planning.- 5 Learning by Analogy: Formulating and Generalizing Plans from Past Experience.- 6 Learning by Experimentation: Acquiring and Refining Problem-Solving Heuristics.- 7 Acquisition of Proof Skills in Geometry.- 8 Using Proofs and Refutations to Learn from Experience.- Four Learning from Observation and Discovery.- 9 The Role of Heuristics in Learning by Discovery: Three Case Studies.- 10 Rediscovering Chemistry With the BACON System.- 11 Learning From Observation: Conceptual Clustering.- Five Learning from Instruction.- 12 Machine Transformation of Advice into a Heuristic Search Procedure.- 13 Learning by Being Told: Acquiring Knowledge for Information Management.- 14 The Instructible Production System: A Retrospective Analysis.- Six Applied Learning Systems.- 15 Learning Efficient Classification Procedures and their Application to Chess End Games.- 16 Inferring Student Models for Intelligent Computer-Aided Instruction.- Comprehensive Bibliography of Machine Learning.- Glossary of Selected Terms In Machine Learning.- About the Authors.- Author Index.