Map Projections: Cartographic Information Systems
Autor Erik W. Grafarend, Rey-Jer You, Rainer Syffusen Limba Engleză Paperback – 4 mai 2017
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1134.74 lei 38-44 zile | |
Springer Berlin, Heidelberg – 4 mai 2017 | 1134.74 lei 38-44 zile | |
Hardback (1) | 1285.04 lei 3-5 săpt. | |
Springer Berlin, Heidelberg – 26 sep 2014 | 1285.04 lei 3-5 săpt. |
Preț: 1134.74 lei
Preț vechi: 1493.07 lei
-24% Nou
Puncte Express: 1702
Preț estimativ în valută:
217.32€ • 223.91$ • 182.05£
217.32€ • 223.91$ • 182.05£
Carte tipărită la comandă
Livrare economică 20-26 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783662517468
ISBN-10: 3662517469
Pagini: 935
Ilustrații: XXVI, 935 p. 286 illus., 3 illus. in color. In 2 volumes, not available separately.
Dimensiuni: 210 x 279 mm
Ediția:Softcover reprint of the original 2nd ed. 2014
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3662517469
Pagini: 935
Ilustrații: XXVI, 935 p. 286 illus., 3 illus. in color. In 2 volumes, not available separately.
Dimensiuni: 210 x 279 mm
Ediția:Softcover reprint of the original 2nd ed. 2014
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
Cuprins
From the Contents: From Riemann manifolds to Riemann manifolds.- From Riemann manifolds to Euclidean manifolds.- Coordinates.- Surfaces of Gaussian curvature zero.- Sphere to tangential plane': polar (normal) aspect.- Sphere to tangential plane': transverse aspect.- Sphere to tangential plane: oblique aspect.- Ellipsoid-of-revolution to tangential plane.- Ellipsoid-of-revolution to sphere and from sphere to plane.- Sphere to cylinder: polar aspect.- Sphere to cylinder: transverse aspect.
Notă biografică
Prof. Dr. Erik W. Grafarend, Stuttgart University, Stuttgart, Germany email: grafarend@gis.uni-stuttgart.de
Prof. Dr.-Ing. Rey-Jer You, National Cheng Kung University, Tainan, Taiwan Dipl.-Ing.
Rainer Syffus, ESG Elektroniksystem- und Logistik GmbH, Fuerstenfeldbruck, Germany
Prof. Dr.-Ing. Rey-Jer You, National Cheng Kung University, Tainan, Taiwan Dipl.-Ing.
Rainer Syffus, ESG Elektroniksystem- und Logistik GmbH, Fuerstenfeldbruck, Germany
Textul de pe ultima copertă
In the context of Geographical Information Systems (GIS) the book offers a timely review of Map Projections. The first chapters are of foundational type. We introduce the mapping from a left Riemann manifold to a right one specified as conformal, equiaerial and equidistant, perspective and geodetic. In particular, the mapping from a Riemann manifold to a Euclidean manifold ("plane") and the design of various coordinate systems are reviewed . A speciality is the treatment of surfaces of Gaussian curvature zero. The largest part is devoted to the mapping the sphere and the ellipsoid-of-revolution to tangential plane, cylinder and cone (pseudo-cone) using the polar aspect, transverse as well as oblique aspect. Various Geodetic Mappings as well as the Datum Problem are reviewed. In the first extension we introduce optimal map projections by variational calculus for the sphere, respectively the ellipsoid generating harmonic maps. The second extension reviews alternative maps for structures , namely torus (pneu), hyperboloid (cooling tower), paraboloid (parabolic mirror), onion shape (church tower) as well as clothoid (Hight Speed Railways) used in Project Surveying. Third, we present the Datum Transformation described by the Conformal Group C10 (3) in a threedimensional Euclidean space , a ten parameter conformal transformation. It leaves infinitesimal angles and distance ratios equivariant. Numerical examples from classical and new map projections as well as twelve appendices document the Wonderful World of Map Projections.
Caracteristici
The book is of great benefit for the target group There is no competition from other text books or from other publications The book is the first complete review of the topic of Map Projections to a lot of other sciences Includes supplementary material: sn.pub/extras